lightning/tests/loggers/test_tensorboard.py

337 lines
11 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import operator
import os
from argparse import Namespace
from unittest import mock
import numpy as np
import pytest
import torch
import yaml
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities.imports import _compare_version, _OMEGACONF_AVAILABLE
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
if _OMEGACONF_AVAILABLE:
from omegaconf import OmegaConf
@pytest.mark.skipif(
_compare_version("tensorboard", operator.ge, "2.6.0"), reason="cannot import EventAccumulator in >= 2.6.0"
)
def test_tensorboard_hparams_reload(tmpdir):
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
class CustomModel(BoringModel):
def __init__(self, b1=0.5, b2=0.999):
super().__init__()
self.save_hyperparameters()
trainer = Trainer(max_steps=1, default_root_dir=tmpdir)
model = CustomModel()
assert trainer.log_dir == trainer.logger.log_dir
trainer.fit(model)
assert trainer.log_dir == trainer.logger.log_dir
folder_path = trainer.log_dir
# make sure yaml is there
with open(os.path.join(folder_path, "hparams.yaml")) as file:
# The FullLoader parameter handles the conversion from YAML
# scalar values to Python the dictionary format
yaml_params = yaml.safe_load(file)
assert yaml_params["b1"] == 0.5
assert yaml_params["b2"] == 0.999
assert len(yaml_params.keys()) == 2
# verify artifacts
assert len(os.listdir(os.path.join(folder_path, "checkpoints"))) == 1
# verify tb logs
event_acc = EventAccumulator(folder_path)
event_acc.Reload()
hparams_data = b'\x12\x1f"\x06\n\x02b1 \x03"\x06\n\x02b2 \x03*\r\n\x0b\x12\thp_metric'
assert event_acc.summary_metadata["_hparams_/experiment"].plugin_data.plugin_name == "hparams"
assert event_acc.summary_metadata["_hparams_/experiment"].plugin_data.content == hparams_data
def test_tensorboard_automatic_versioning(tmpdir):
"""Verify that automatic versioning works."""
root_dir = tmpdir / "tb_versioning"
root_dir.mkdir()
(root_dir / "version_0").mkdir()
(root_dir / "version_1").mkdir()
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning")
assert logger.version == 2
def test_tensorboard_manual_versioning(tmpdir):
"""Verify that manual versioning works."""
root_dir = tmpdir / "tb_versioning"
root_dir.mkdir()
(root_dir / "version_0").mkdir()
(root_dir / "version_1").mkdir()
(root_dir / "version_2").mkdir()
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1)
assert logger.version == 1
def test_tensorboard_named_version(tmpdir):
"""Verify that manual versioning works for string versions, e.g. '2020-02-05-162402'."""
name = "tb_versioning"
(tmpdir / name).mkdir()
expected_version = "2020-02-05-162402"
logger = TensorBoardLogger(save_dir=tmpdir, name=name, version=expected_version)
logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written
assert logger.version == expected_version
assert os.listdir(tmpdir / name) == [expected_version]
assert os.listdir(tmpdir / name / expected_version)
@pytest.mark.parametrize("name", ["", None])
def test_tensorboard_no_name(tmpdir, name):
"""Verify that None or empty name works."""
logger = TensorBoardLogger(save_dir=tmpdir, name=name)
logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written
assert logger.root_dir == tmpdir
assert os.listdir(tmpdir / "version_0")
@mock.patch.dict(os.environ, {})
def test_tensorboard_log_sub_dir(tmpdir):
class TestLogger(TensorBoardLogger):
# for reproducibility
@property
def version(self):
return "version"
@property
def name(self):
return "name"
trainer_args = dict(default_root_dir=tmpdir, max_steps=1)
# no sub_dir specified
save_dir = tmpdir / "logs"
logger = TestLogger(save_dir)
trainer = Trainer(**trainer_args, logger=logger)
assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version")
# sub_dir specified
logger = TestLogger(save_dir, sub_dir="sub_dir")
trainer = Trainer(**trainer_args, logger=logger)
assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version", "sub_dir")
# test home dir (`~`) handling
save_dir = "~/tmp"
explicit_save_dir = os.path.expanduser(save_dir)
logger = TestLogger(save_dir, sub_dir="sub_dir")
trainer = Trainer(**trainer_args, logger=logger)
assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir")
# test env var (`$`) handling
test_env_dir = "some_directory"
os.environ["test_env_dir"] = test_env_dir
save_dir = "$test_env_dir/tmp"
explicit_save_dir = f"{test_env_dir}/tmp"
logger = TestLogger(save_dir, sub_dir="sub_dir")
trainer = Trainer(**trainer_args, logger=logger)
assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir")
@pytest.mark.parametrize("step_idx", [10, None])
def test_tensorboard_log_metrics(tmpdir, step_idx):
logger = TensorBoardLogger(tmpdir)
metrics = {"float": 0.3, "int": 1, "FloatTensor": torch.tensor(0.1), "IntTensor": torch.tensor(1)}
logger.log_metrics(metrics, step_idx)
def test_tensorboard_log_hyperparams(tmpdir):
logger = TensorBoardLogger(tmpdir)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True,
"dict": {"a": {"b": "c"}},
"list": [1, 2, 3],
"namespace": Namespace(foo=Namespace(bar="buzz")),
"layer": torch.nn.BatchNorm1d,
"tensor": torch.empty(2, 2, 2),
"array": np.empty([2, 2, 2]),
}
logger.log_hyperparams(hparams)
def test_tensorboard_log_hparams_and_metrics(tmpdir):
logger = TensorBoardLogger(tmpdir, default_hp_metric=False)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True,
"dict": {"a": {"b": "c"}},
"list": [1, 2, 3],
"namespace": Namespace(foo=Namespace(bar="buzz")),
"layer": torch.nn.BatchNorm1d,
"tensor": torch.empty(2, 2, 2),
"array": np.empty([2, 2, 2]),
}
metrics = {"abc": torch.tensor([0.54])}
logger.log_hyperparams(hparams, metrics)
@RunIf(omegaconf=True)
def test_tensorboard_log_omegaconf_hparams_and_metrics(tmpdir):
logger = TensorBoardLogger(tmpdir, default_hp_metric=False)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True,
"dict": {"a": {"b": "c"}},
"list": [1, 2, 3],
}
hparams = OmegaConf.create(hparams)
metrics = {"abc": torch.tensor([0.54])}
logger.log_hyperparams(hparams, metrics)
@pytest.mark.parametrize("example_input_array", [None, torch.rand(2, 32)])
def test_tensorboard_log_graph(tmpdir, example_input_array):
"""test that log graph works with both model.example_input_array and if array is passed externaly."""
model = BoringModel()
if example_input_array is not None:
model.example_input_array = None
logger = TensorBoardLogger(tmpdir, log_graph=True)
logger.log_graph(model, example_input_array)
def test_tensorboard_log_graph_warning_no_example_input_array(tmpdir):
"""test that log graph throws warning if model.example_input_array is None."""
model = BoringModel()
model.example_input_array = None
logger = TensorBoardLogger(tmpdir, log_graph=True)
with pytest.warns(
UserWarning,
match="Could not log computational graph since the `model.example_input_array`"
" attribute is not set or `input_array` was not given",
):
logger.log_graph(model)
@mock.patch("pytorch_lightning.loggers.TensorBoardLogger.log_metrics")
def test_tensorboard_with_accummulated_gradients(mock_log_metrics, tmpdir):
"""Tests to ensure that tensorboard log properly when accumulated_gradients > 1."""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.indexes = []
def training_step(self, *args):
self.log("foo", 1, on_step=True, on_epoch=True)
if not self.trainer.fit_loop._should_accumulate():
if self.trainer.logger_connector.should_update_logs:
self.indexes.append(self.trainer.global_step)
return super().training_step(*args)
model = TestModel()
model.training_epoch_end = None
logger_0 = TensorBoardLogger(tmpdir, default_hp_metric=False)
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=12,
limit_val_batches=0,
max_epochs=3,
accumulate_grad_batches=2,
logger=[logger_0],
log_every_n_steps=3,
)
trainer.fit(model)
calls = [m[2] for m in mock_log_metrics.mock_calls]
count_epochs = [c["step"] for c in calls if "foo_epoch" in c["metrics"]]
assert count_epochs == [5, 11, 17]
count_steps = [c["step"] for c in calls if "foo_step" in c["metrics"]]
assert count_steps == model.indexes
@mock.patch("pytorch_lightning.loggers.tensorboard.SummaryWriter")
def test_tensorboard_finalize(summary_writer, tmpdir):
"""Test that the SummaryWriter closes in finalize."""
logger = TensorBoardLogger(save_dir=tmpdir)
logger.finalize("any")
summary_writer().flush.assert_called()
summary_writer().close.assert_called()
def test_tensorboard_save_hparams_to_yaml_once(tmpdir):
model = BoringModel()
logger = TensorBoardLogger(save_dir=tmpdir, default_hp_metric=False)
trainer = Trainer(max_steps=1, default_root_dir=tmpdir, logger=logger)
assert trainer.log_dir == trainer.logger.log_dir
trainer.fit(model)
hparams_file = "hparams.yaml"
assert os.path.isfile(os.path.join(trainer.log_dir, hparams_file))
assert not os.path.isfile(os.path.join(tmpdir, hparams_file))
@mock.patch("pytorch_lightning.loggers.tensorboard.log")
def test_tensorboard_with_symlink(log, tmpdir):
"""Tests a specific failure case when tensorboard logger is used with empty name, symbolic link ``save_dir``,
and relative paths."""
os.chdir(tmpdir) # need to use relative paths
source = os.path.join(".", "lightning_logs")
dest = os.path.join(".", "sym_lightning_logs")
os.makedirs(source, exist_ok=True)
os.symlink(source, dest)
logger = TensorBoardLogger(save_dir=dest, name="")
_ = logger.version
log.warning.assert_not_called()
def test_tensorboard_missing_folder_warning(tmpdir, caplog):
"""Verify that the logger throws a warning for invalid directory."""
name = "fake_dir"
logger = TensorBoardLogger(save_dir=tmpdir, name=name)
with caplog.at_level(logging.WARNING):
assert logger.version == 0
assert "Missing logger folder:" in caplog.text