lightning/tests/core/test_lightning_optimizer.py

312 lines
12 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
from typing import Any
from unittest.mock import DEFAULT, patch
import pytest
import torch
from torch.optim import Adam, Optimizer, SGD
from pytorch_lightning import Trainer
from pytorch_lightning.core.optimizer import LightningOptimizer
from pytorch_lightning.loops.optimization.optimizer_loop import Closure
from tests.helpers.boring_model import BoringModel
@pytest.mark.parametrize("auto", (True, False))
def test_lightning_optimizer(tmpdir, auto):
"""Test that optimizer are correctly wrapped by our LightningOptimizer."""
class TestModel(BoringModel):
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
if not auto:
# note: this is not recommended, only done for coverage
optimizer = LightningOptimizer(optimizer)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
return [optimizer], [lr_scheduler]
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=1, max_epochs=1, enable_model_summary=False
)
trainer.fit(model)
lightning_opt = model.optimizers()
assert str(lightning_opt) == "Lightning" + str(lightning_opt.optimizer)
def test_lightning_optimizer_manual_optimization_and_accumulated_gradients(tmpdir):
"""Test that the user can use our LightningOptimizer.
Not recommended.
"""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
opt_1, opt_2 = self.optimizers()
assert isinstance(opt_1, LightningOptimizer)
assert isinstance(opt_2, LightningOptimizer)
def closure(opt):
output = self.layer(batch)
loss = self.loss(batch, output)
opt.zero_grad()
self.manual_backward(loss)
if batch_idx % 2 == 0:
closure(opt_1)
opt_1.step()
closure(opt_2)
opt_2.step()
def configure_optimizers(self):
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
return [optimizer_1, optimizer_2], [lr_scheduler]
model = TestModel()
model.training_step_end = None
model.training_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir, limit_train_batches=8, limit_val_batches=1, max_epochs=1, enable_model_summary=False
)
with patch.multiple(torch.optim.SGD, zero_grad=DEFAULT, step=DEFAULT) as sgd, patch.multiple(
torch.optim.Adam, zero_grad=DEFAULT, step=DEFAULT
) as adam:
trainer.fit(model)
assert sgd["step"].call_count == 4
assert adam["step"].call_count == 8
assert sgd["zero_grad"].call_count == 4
assert adam["zero_grad"].call_count == 8
def test_state(tmpdir):
model = torch.nn.Linear(3, 4)
optimizer = torch.optim.Adam(model.parameters())
lightning_optimizer = LightningOptimizer(optimizer)
# test state
assert optimizer.state == lightning_optimizer.state
lightning_optimizer.state = optimizer.state
assert optimizer.state == lightning_optimizer.state
# test param_groups
assert optimizer.param_groups == lightning_optimizer.param_groups
lightning_optimizer.param_groups = optimizer.param_groups
assert optimizer.param_groups == lightning_optimizer.param_groups
# test defaults
assert optimizer.defaults == lightning_optimizer.defaults
lightning_optimizer.defaults = optimizer.defaults
assert optimizer.defaults == lightning_optimizer.defaults
assert isinstance(lightning_optimizer, LightningOptimizer)
assert isinstance(lightning_optimizer, Adam)
assert isinstance(lightning_optimizer, Optimizer)
lightning_dict = {
k: v for k, v in lightning_optimizer.__dict__.items() if k not in {"_optimizer", "_optimizer_idx", "_trainer"}
}
assert lightning_dict == optimizer.__dict__
assert optimizer.state_dict() == lightning_optimizer.state_dict()
assert optimizer.state == lightning_optimizer.state
def test_lightning_optimizer_automatic_optimization_optimizer_zero_grad(tmpdir):
"""Test overriding zero_grad works in automatic_optimization."""
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx=None):
return super().training_step(batch, batch_idx)
def training_epoch_end(self, outputs):
...
def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx):
if isinstance(optimizer, SGD) and batch_idx % 2 == 0:
optimizer.zero_grad()
if isinstance(optimizer, Adam) and batch_idx % 5 == 0:
optimizer.zero_grad()
def configure_optimizers(self):
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
return [optimizer_1, optimizer_2], [lr_scheduler]
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir, limit_train_batches=20, limit_val_batches=1, max_epochs=1, enable_model_summary=False
)
with patch("torch.optim.Adam.zero_grad") as adam_zero_grad, patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
trainer.fit(model)
assert adam_zero_grad.call_count == 4
assert sgd_zero_grad.call_count == 10
def test_lightning_optimizer_automatic_optimization_optimizer_step(tmpdir):
"""Test overriding step works in automatic_optimization."""
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx=None):
return super().training_step(batch, batch_idx)
def training_epoch_end(self, outputs):
...
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, **_):
assert isinstance(optimizer_closure, Closure)
# zero_grad is called inside the closure
optimizer_closure()
# not passing the closure to the optimizer because step is mocked
if isinstance(optimizer, SGD) and batch_idx % 2 == 0:
optimizer.step()
if isinstance(optimizer, Adam) and batch_idx % 4 == 0:
optimizer.step()
def configure_optimizers(self):
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
return [optimizer_1, optimizer_2], [lr_scheduler]
model = TestModel()
limit_train_batches = 8
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=1,
max_epochs=1,
enable_model_summary=False,
)
with patch.multiple(torch.optim.SGD, zero_grad=DEFAULT, step=DEFAULT) as sgd, patch.multiple(
torch.optim.Adam, zero_grad=DEFAULT, step=DEFAULT
) as adam:
trainer.fit(model)
assert sgd["step"].call_count == limit_train_batches // 2
assert adam["step"].call_count == limit_train_batches // 4
assert sgd["zero_grad"].call_count == limit_train_batches
assert adam["zero_grad"].call_count == limit_train_batches
def test_lightning_optimizer_automatic_optimization_lbfgs_zero_grad(tmpdir):
"""Test zero_grad is called the same number of times as LBFGS requires for reevaluation of the loss in
automatic_optimization."""
class TestModel(BoringModel):
def configure_optimizers(self):
return torch.optim.LBFGS(self.parameters())
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=1, max_epochs=1, enable_model_summary=False
)
with patch("torch.optim.LBFGS.zero_grad") as zero_grad:
trainer.fit(model)
lbfgs = model.optimizers()
max_iter = lbfgs.param_groups[0]["max_iter"]
assert zero_grad.call_count == max_iter
class OptimizerWithHooks(Optimizer):
def __init__(self, model):
self._fwd_handles = []
self._bwd_handles = []
self.params = []
for _, mod in model.named_modules():
mod_class = mod.__class__.__name__
if mod_class != "Linear":
continue
handle = mod.register_forward_pre_hook(self._save_input) # save the inputs
self._fwd_handles.append(handle) # collect forward-save-input hooks in list
handle = mod.register_backward_hook(self._save_grad_output) # save the gradients
self._bwd_handles.append(handle) # collect backward-save-grad hook in list
# save the parameters
params = [mod.weight]
if mod.bias is not None:
params.append(mod.bias)
# save a param_group for each module
d = {"params": params, "mod": mod, "layer_type": mod_class}
self.params.append(d)
super().__init__(self.params, {"lr": 0.01})
def _save_input(self, mod, i):
"""Saves input of layer."""
if mod.training:
self.state[mod]["x"] = i[0]
def _save_grad_output(self, mod, _, grad_output):
"""Saves grad on output of layer to grad is scaled with batch_size since gradient is spread over samples in
mini batch."""
batch_size = grad_output[0].shape[0]
if mod.training:
self.state[mod]["grad"] = grad_output[0] * batch_size
def step(self, closure=None):
closure()
for group in self.param_groups:
_ = self.state[group["mod"]]["x"]
_ = self.state[group["mod"]]["grad"]
return True
def test_lightning_optimizer_keeps_hooks(tmpdir):
class TestModel(BoringModel):
count_on_train_batch_start = 0
count_on_train_batch_end = 0
def configure_optimizers(self):
return OptimizerWithHooks(self)
def on_train_batch_start(self, batch: Any, batch_idx: int) -> None:
self.count_on_train_batch_start += 1
optimizer = self.optimizers(use_pl_optimizer=False)
assert len(optimizer._fwd_handles) == 1
def on_train_batch_end(self, outputs: Any, batch: Any, batch_idx: int) -> None:
self.count_on_train_batch_end += 1
del self.trainer._lightning_optimizers
gc.collect() # not necessary, just in case
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=4, limit_val_batches=1, max_epochs=1)
model = TestModel()
trainer.fit(model)
assert model.count_on_train_batch_start == 4
assert model.count_on_train_batch_end == 4