lightning/pl_examples/__init__.py

147 lines
4.3 KiB
Python

"""
Template model definition
-------------------------
In 99% of cases you want to just copy `one of the examples
<https://github.com/williamFalcon/pytorch-lightning/tree/master/pl_examples>`_
to start a new lightningModule and change the core of what your model is actually trying to do.
.. code-block:: bash
# get a copy of the module template
wget https://raw.githubusercontent.com/williamFalcon/pytorch-lightning/master/pl_examples/new_project_templates/lightning_module_template.py # noqa: E501
Trainer Example
---------------
**`__main__` function**
Normally, we want to let the `__main__` function start the training.
Inside the main we parse training arguments with whatever hyperparameters we want.
Your LightningModule will have a chance to add hyperparameters.
.. code-block:: python
from test_tube import HyperOptArgumentParser
if __name__ == '__main__':
# use default args given by lightning
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
parent_parser = HyperOptArgumentParser(strategy='random_search', add_help=False)
add_default_args(parent_parser, root_dir)
# allow model to overwrite or extend args
parser = ExampleModel.add_model_specific_args(parent_parser)
hyperparams = parser.parse_args()
# train model
main(hyperparams)
**Main Function**
The main function is your entry into the program. This is where you init your model, checkpoint directory,
and launch the training. The main function should have 3 arguments:
- hparams: a configuration of hyperparameters.
- slurm_manager: Slurm cluster manager object (can be None)
- dict: for you to return any values you want (useful in meta-learning, otherwise set to)
.. code-block:: python
def main(hparams, cluster, results_dict):
# build model
model = MyLightningModule(hparams)
# configure trainer
trainer = Trainer()
# train model
trainer.fit(model)
The `__main__` function will start training on your **main** function.
If you use the HyperParameterOptimizer in hyper parameter optimization mode,
this main function will get one set of hyperparameters. If you use it as a simple
argument parser you get the default arguments in the argument parser.
So, calling main(hyperparams) runs the model with the default argparse arguments.::
main(hyperparams)
CPU hyperparameter search
-------------------------
.. code-block:: python
# run a grid search over 20 hyperparameter combinations.
hyperparams.optimize_parallel_cpu(
main_local,
nb_trials=20,
nb_workers=1
)
Hyperparameter search on a single or multiple GPUs
--------------------------------------------------
.. code-block:: python
# run a grid search over 20 hyperparameter combinations.
hyperparams.optimize_parallel_gpu(
main_local,
nb_trials=20,
nb_workers=1,
gpus=[0,1,2,3]
)
Hyperparameter search on a SLURM HPC cluster
--------------------------------------------
.. code-block:: python
def optimize_on_cluster(hyperparams):
# enable cluster training
cluster = SlurmCluster(
hyperparam_optimizer=hyperparams,
log_path=hyperparams.tt_save_path,
test_tube_exp_name=hyperparams.tt_name
)
# email for cluster coms
cluster.notify_job_status(email='add_email_here', on_done=True, on_fail=True)
# configure cluster
cluster.per_experiment_nb_gpus = hyperparams.per_experiment_nb_gpus
cluster.job_time = '48:00:00'
cluster.gpu_type = '1080ti'
cluster.memory_mb_per_node = 48000
# any modules for code to run in env
cluster.add_command('source activate pytorch_lightning')
# name of exp
job_display_name = hyperparams.tt_name.split('_')[0]
job_display_name = job_display_name[0:3]
# run hopt
logging.info('submitting jobs...')
cluster.optimize_parallel_cluster_gpu(
main,
nb_trials=hyperparams.nb_hopt_trials,
job_name=job_display_name
)
# run cluster hyperparameter search
optimize_on_cluster(hyperparams)
"""
from .basic_examples.lightning_module_template import LightningTemplateModel
__all__ = [
'LightningTemplateModel'
]