lightning/pytorch_lightning/loggers/base.py

75 lines
1.9 KiB
Python

from abc import ABC
from functools import wraps
def rank_zero_only(fn):
"""Decorate a logger method to run it only on the process with rank 0.
:param fn: Function to decorate
"""
@wraps(fn)
def wrapped_fn(self, *args, **kwargs):
if self.rank == 0:
fn(self, *args, **kwargs)
return wrapped_fn
class LightningLoggerBase(ABC):
"""Base class for experiment loggers."""
def __init__(self):
self._rank = 0
@property
def experiment(self):
raise NotImplementedError()
def log_metrics(self, metrics, step):
"""Record metrics.
:param float metric: Dictionary with metric names as keys and measured quanties as values
:param int|None step: Step number at which the metrics should be recorded
"""
raise NotImplementedError()
def log_hyperparams(self, params):
"""Record hyperparameters.
:param params: argparse.Namespace containing the hyperparameters
"""
raise NotImplementedError()
def save(self):
"""Save log data."""
def finalize(self, status):
"""Do any processing that is necessary to finalize an experiment.
:param status: Status that the experiment finished with (e.g. success, failed, aborted)
"""
def close(self):
"""Do any cleanup that is necessary to close an experiment."""
@property
def rank(self):
"""Process rank. In general, metrics should only be logged by the process with rank 0."""
return self._rank
@rank.setter
def rank(self, value):
"""Set the process rank."""
self._rank = value
@property
def name(self):
"""Return the experiment name."""
raise NotImplementedError("Sub-classes must provide a name property")
@property
def version(self):
"""Return the experiment version."""
raise NotImplementedError("Sub-classes must provide a version property")