72 lines
2.4 KiB
Python
72 lines
2.4 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytest
|
|
|
|
from pytorch_lightning import Callback, Trainer
|
|
from tests.base.boring_model import BoringModel
|
|
|
|
|
|
@pytest.mark.parametrize("single_cb", [False, True])
|
|
def test_train_step_no_return(tmpdir, single_cb):
|
|
"""
|
|
Tests that only training_step can be used
|
|
"""
|
|
class CB(Callback):
|
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
d = outputs[0][0]
|
|
assert 'minimize' in d
|
|
|
|
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
assert 'x' in outputs
|
|
|
|
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
assert 'x' in outputs
|
|
|
|
def on_train_epoch_end(self, trainer, pl_module, outputs):
|
|
d = outputs[0]
|
|
assert len(d) == trainer.num_training_batches
|
|
|
|
class TestModel(BoringModel):
|
|
def on_train_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None:
|
|
d = outputs[0][0]
|
|
assert 'minimize' in d
|
|
|
|
def on_validation_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None:
|
|
assert 'x' in outputs
|
|
|
|
def on_test_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None:
|
|
assert 'x' in outputs
|
|
|
|
def on_train_epoch_end(self, outputs) -> None:
|
|
d = outputs[0]
|
|
assert len(d) == self.trainer.num_training_batches
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
|
callbacks=CB() if single_cb else [CB()],
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
max_epochs=1,
|
|
log_every_n_steps=1,
|
|
weights_summary=None,
|
|
)
|
|
|
|
assert any(isinstance(c, CB) for c in trainer.callbacks)
|
|
|
|
results = trainer.fit(model)
|
|
assert results
|