lightning/tests/trainer/test_dataloaders.py

1493 lines
58 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
from unittest.mock import Mock, patch
import numpy
import pytest
import torch
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset, IterableDataset, Subset
from torch.utils.data.distributed import DistributedSampler
import tests.helpers.pipelines as tpipes
from pytorch_lightning import Callback, seed_everything, Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.utilities.data import has_iterable_dataset, has_len
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
from tests.helpers.boring_model import BoringModel, RandomDataset, RandomIterableDataset, RandomIterableDatasetWithLen
from tests.helpers.runif import RunIf
def test_fit_train_loader_only(tmpdir):
model = EvalModelTemplate()
train_dataloader = model.train_dataloader()
model.train_dataloader = None
model.val_dataloader = None
model.test_dataloader = None
model.validation_step = None
model.validation_epoch_end = None
model.test_step = None
model.test_epoch_end = None
trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir)
trainer.fit(model, train_dataloader=train_dataloader)
def test_fit_val_loader_only(tmpdir):
model = EvalModelTemplate()
train_dataloader = model.train_dataloader()
val_dataloader = model.val_dataloader()
model.train_dataloader = None
model.val_dataloader = None
model.test_dataloader = None
model.test_step = None
model.test_epoch_end = None
trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir)
trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader)
@pytest.mark.parametrize("dataloader_options", [dict(val_check_interval=10000)])
def test_dataloader_config_errors_runtime(tmpdir, dataloader_options):
model = EvalModelTemplate()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, **dataloader_options)
with pytest.raises(ValueError):
# fit model
trainer.fit(model)
@pytest.mark.parametrize(
"dataloader_options",
[
dict(limit_train_batches=-0.1),
dict(limit_train_batches=1.2),
dict(limit_val_batches=-0.1),
dict(limit_val_batches=1.2),
dict(limit_test_batches=-0.1),
dict(limit_test_batches=1.2),
dict(val_check_interval=-0.1),
dict(val_check_interval=1.2),
dict(overfit_batches=-0.1),
dict(overfit_batches=1.2),
],
)
def test_dataloader_config_errors_init(tmpdir, dataloader_options):
with pytest.raises(MisconfigurationException, match="passed invalid value"):
Trainer(default_root_dir=tmpdir, max_epochs=1, **dataloader_options)
def test_multiple_val_dataloader(tmpdir):
"""Verify multiple val_dataloader."""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__multiple
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
# fit model
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=1.0)
trainer.fit(model)
# verify training completed
assert trainer.state.finished, f"Training failed with {trainer.state}"
# verify there are 2 val loaders
assert len(trainer.val_dataloaders) == 2, "Multiple val_dataloaders not initiated properly"
# make sure predictions are good for each val set
for dataloader in trainer.val_dataloaders:
tpipes.run_prediction_eval_model_template(trained_model=model, dataloader=dataloader)
@pytest.mark.parametrize("ckpt_path", [None, "best", "specific"])
def test_multiple_eval_dataloader(tmpdir, ckpt_path):
"""Verify multiple evaluation dataloaders."""
class MultipleTestDataloaderModel(EvalModelTemplate):
def test_dataloader(self):
return [self.dataloader(train=False), self.dataloader(train=False)]
def test_step(self, *args, **kwargs):
return super().test_step__multiple_dataloaders(*args, **kwargs)
def val_dataloader(self):
return self.test_dataloader()
def validation_step(self, *args, **kwargs):
output = self.test_step(*args, **kwargs)
return {k.replace("test_", "val_"): v for k, v in output.items()}
model = MultipleTestDataloaderModel()
# fit model
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=10, limit_train_batches=100)
trainer.fit(model)
if ckpt_path == "specific":
ckpt_path = trainer.checkpoint_callback.best_model_path
trainer.validate(ckpt_path=ckpt_path, verbose=False)
# verify there are 2 loaders
assert len(trainer.val_dataloaders) == 2
# make sure predictions are good for each dl
for dataloader in trainer.val_dataloaders:
tpipes.run_prediction_eval_model_template(trainer.model, dataloader)
trainer.test(ckpt_path=ckpt_path, verbose=False)
assert len(trainer.test_dataloaders) == 2
for dataloader in trainer.test_dataloaders:
tpipes.run_prediction_eval_model_template(trainer.model, dataloader)
def test_train_dataloader_passed_to_fit(tmpdir):
"""Verify that train dataloader can be passed to fit."""
# only train passed to fit
model = EvalModelTemplate()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=0.2)
fit_options = dict(train_dataloader=model.dataloader(train=True))
trainer.fit(model, **fit_options)
assert trainer.state.finished, f"Training failed with {trainer.state}"
@pytest.mark.parametrize("ckpt_path", [None, "best", "specific"])
@pytest.mark.parametrize("n", (1, 2))
def test_dataloaders_passed_to_fn(tmpdir, ckpt_path, n):
"""Verify that dataloaders can be passed."""
model = EvalModelTemplate()
if n == 1:
dataloaders = model.dataloader(train=False)
else:
dataloaders = [model.dataloader(train=False)] * 2
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
model.test_step = model.test_step__multiple_dataloaders
# train, multiple val and multiple test passed to fit
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=0.2)
trainer.fit(model, train_dataloader=model.dataloader(train=True), val_dataloaders=dataloaders)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert len(trainer.val_dataloaders) == n
if ckpt_path == "specific":
ckpt_path = trainer.checkpoint_callback.best_model_path
trainer.test(test_dataloaders=dataloaders, ckpt_path=ckpt_path)
trainer.validate(val_dataloaders=dataloaders, ckpt_path=ckpt_path)
assert len(trainer.val_dataloaders) == n
assert len(trainer.test_dataloaders) == n
class DummyModel(BoringModel):
def training_step(self, batch, batch_idx):
self.log("loss", self.global_step)
return super().training_step(batch, batch_idx)
def validation_epoch_end(self, outputs):
self.log("val_log", self.current_epoch)
class Counter(Callback):
def __init__(self):
super().__init__()
self.train_epoch_count = 0
self.val_epoch_count = 0
self.test_epoch_count = 0
self.train_batches_seen = 0
self.val_batches_seen = 0
self.test_batches_seen = 0
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
self.train_batches_seen += 1
def on_train_epoch_start(self, trainer, pl_module):
self.train_epoch_count += 1
def on_validation_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
self.val_batches_seen += 1
def on_test_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
self.test_batches_seen += 1
def on_validation_epoch_start(self, trainer, pl_module):
self.val_epoch_count += 1
def on_test_epoch_start(self, trainer, pl_module):
self.test_epoch_count += 1
@pytest.mark.parametrize(
["limit_train_batches", "limit_val_batches", "limit_test_batches"], [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)]
)
def test_inf_dataloaders_with_limit_percent_batches(tmpdir, limit_train_batches, limit_val_batches, limit_test_batches):
"""Verify inf train, val & test dataloaders (e.g. IterableDataset) passed with batch limit in percent."""
ckpt_callback = ModelCheckpoint(monitor="val_log", save_top_k=1, mode="max", verbose=False)
epoch_cb = Counter()
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=0,
max_epochs=1,
callbacks=[epoch_cb, ckpt_callback],
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
)
model = DummyModel()
batch_size = 8
train_dl = DataLoader(dataset=RandomIterableDataset(32, 128), batch_size=batch_size)
val_dl = DataLoader(dataset=RandomIterableDataset(32, 128), batch_size=batch_size)
test_dl = DataLoader(dataset=RandomIterableDataset(32, 128), batch_size=batch_size)
num_batches = 128 / batch_size
for dl in (train_dl, val_dl, test_dl):
if has_len(dl):
assert len(dl) == num_batches
else:
assert sum(1 for _ in dl) == num_batches
trainer.fit(model, train_dataloader=train_dl, val_dataloaders=val_dl)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert trainer.num_training_batches == (0 if limit_train_batches == 0.0 else float("inf"))
assert epoch_cb.train_epoch_count == int(limit_train_batches > 0)
assert trainer.num_val_batches[0] == (0 if limit_val_batches == 0.0 else float("inf"))
assert epoch_cb.val_epoch_count == int(limit_val_batches > 0)
trainer.test(model, test_dataloaders=test_dl)
assert trainer.num_test_batches[0] == (0 if limit_test_batches == 0.0 else float("inf"))
assert epoch_cb.test_epoch_count == int(limit_test_batches > 0)
@pytest.mark.parametrize(
["dataset", "limit_train_batches"],
[
(RandomDataset(32, 128), 0),
(RandomDataset(32, 128), 10),
(RandomIterableDataset(32, 128), 0),
(RandomIterableDataset(32, 128), 10),
(RandomIterableDatasetWithLen(32, 128), 0),
(RandomIterableDatasetWithLen(32, 128), 10),
],
)
def test_dataloaders_with_limit_train_batches(tmpdir, dataset, limit_train_batches):
"""Verify inf train, val & test dataloaders (e.g. IterableDataset) passed with batch limit as number."""
ckpt_callback = ModelCheckpoint(monitor="val_log", save_top_k=1, mode="max", verbose=False)
epoch_cb = Counter()
epochs = 2
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=0,
max_epochs=epochs,
callbacks=[epoch_cb, ckpt_callback],
limit_train_batches=limit_train_batches,
)
model = DummyModel()
batch_size = 8
train_dl = DataLoader(dataset=dataset, batch_size=batch_size)
val_dl = DataLoader(dataset=dataset, batch_size=batch_size)
trainer.fit(model, train_dataloader=train_dl, val_dataloaders=val_dl)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert trainer.num_training_batches == limit_train_batches
assert epoch_cb.train_epoch_count == (epochs if limit_train_batches > 0 else 0)
assert epoch_cb.train_batches_seen == limit_train_batches * epochs
@pytest.mark.parametrize(
["dataset", "limit_val_batches"],
[
(RandomDataset(32, 128), 0),
(RandomDataset(32, 128), 10),
(RandomIterableDataset(32, 128), 0),
(RandomIterableDataset(32, 128), 10),
(RandomIterableDatasetWithLen(32, 128), 0),
(RandomIterableDatasetWithLen(32, 128), 10),
],
)
def test_dataloaders_with_limit_val_batches(tmpdir, dataset, limit_val_batches):
"""Verify inf train, val & test dataloaders (e.g. IterableDataset) passed with batch limit as number."""
epoch_cb = Counter()
callbacks = [epoch_cb]
checkpoint_callback = True
if limit_val_batches > 0:
callbacks.append(ModelCheckpoint(monitor="val_log", save_top_k=1, mode="max", verbose=False))
else:
checkpoint_callback = False
epochs = 2
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=0,
max_epochs=epochs,
callbacks=callbacks,
limit_val_batches=limit_val_batches,
checkpoint_callback=checkpoint_callback,
)
model = DummyModel()
batch_size = 8
train_dl = DataLoader(dataset=dataset, batch_size=batch_size)
val_dl = DataLoader(dataset=dataset, batch_size=batch_size)
trainer.fit(model, train_dataloader=train_dl, val_dataloaders=val_dl)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert trainer.num_val_batches[0] == limit_val_batches
assert epoch_cb.val_epoch_count == (epochs if limit_val_batches > 0 else 0)
assert epoch_cb.val_batches_seen == limit_val_batches * epochs
@pytest.mark.parametrize(
["dataset", "limit_train_batches", "limit_val_batches", "limit_test_batches"],
[
(RandomDataset(32, 128), 0, 0, 0),
(RandomDataset(32, 128), 10, 10, 10),
(RandomIterableDataset(32, 128), 0, 0, 0),
(RandomIterableDataset(32, 128), 10, 10, 10),
(RandomIterableDatasetWithLen(32, 128), 0, 0, 0),
(RandomIterableDatasetWithLen(32, 128), 10, 10, 10),
],
)
def test_datasets_dataloaders_with_limit_num_batches(
tmpdir, dataset, limit_train_batches, limit_val_batches, limit_test_batches
):
"""Verify inf train, val & test dataloaders (e.g. IterableDataset) passed with batch limit as number."""
ckpt_callback = ModelCheckpoint(monitor="val_log", save_top_k=1, mode="max", verbose=False)
epoch_cb = Counter()
epochs = 2
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=0,
max_epochs=epochs,
callbacks=[epoch_cb, ckpt_callback],
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
)
model = DummyModel()
batch_size = 8
train_dl = DataLoader(dataset=dataset, batch_size=batch_size)
val_dl = DataLoader(dataset=dataset, batch_size=batch_size)
test_dl = DataLoader(dataset=dataset, batch_size=batch_size)
trainer.fit(model, train_dataloader=train_dl, val_dataloaders=val_dl)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert trainer.num_training_batches == limit_train_batches
assert trainer.num_val_batches[0] == limit_val_batches
assert epoch_cb.train_epoch_count == (epochs if limit_train_batches > 0 else 0)
assert epoch_cb.train_batches_seen == limit_train_batches * epochs
assert epoch_cb.val_epoch_count == (epochs if limit_val_batches > 0 else 0)
assert epoch_cb.val_batches_seen == limit_val_batches * epochs
trainer.test(model, test_dataloaders=test_dl)
assert trainer.num_test_batches[0] == limit_test_batches
assert epoch_cb.test_epoch_count == int(limit_test_batches > 0)
@pytest.mark.parametrize(
["limit_train_batches", "limit_val_batches", "limit_test_batches"],
[(0.0, 0.0, 0.0), (0, 0, 0.5), (1.0, 1.0, 1.0), (0.2, 0.4, 0.4)],
)
def test_dataloaders_with_limit_percent_batches(tmpdir, limit_train_batches, limit_val_batches, limit_test_batches):
"""Verify num_batches for train, val & test dataloaders passed with batch limit in percent."""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__multiple_mixed_length
model.test_dataloader = model.test_dataloader__multiple_mixed_length
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
model.test_step = model.test_step__multiple_dataloaders
model.test_epoch_end = model.test_epoch_end__multiple_dataloaders
# train, multiple val and multiple test passed with percent_check
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
)
trainer.fit(model)
expected_train_batches = int(len(trainer.train_dataloader) * limit_train_batches)
expected_val_batches = [int(len(dataloader) * limit_val_batches) for dataloader in trainer.val_dataloaders]
assert trainer.num_training_batches == expected_train_batches
assert trainer.num_val_batches == expected_val_batches
trainer.test(model)
expected_test_batches = [int(len(dataloader) * limit_test_batches) for dataloader in trainer.test_dataloaders]
assert trainer.num_test_batches == expected_test_batches
@pytest.mark.parametrize(
["limit_train_batches", "limit_val_batches", "limit_test_batches"], [(0, 0, 0), (1, 2, 3), (1, 2, 1e50)]
)
def test_dataloaders_with_limit_num_batches(tmpdir, limit_train_batches, limit_val_batches, limit_test_batches):
"""Verify num_batches for train, val & test dataloaders passed with batch limit as number."""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__multiple_mixed_length
model.test_dataloader = model.test_dataloader__multiple_mixed_length
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
model.test_step = model.test_step__multiple_dataloaders
model.test_epoch_end = model.test_epoch_end__multiple_dataloaders
# train, multiple val and multiple test passed with percent_check
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
num_sanity_val_steps=0,
)
with patch.object(
trainer.fit_loop.epoch_loop.val_loop.epoch_loop,
"evaluation_step",
wraps=trainer.fit_loop.epoch_loop.val_loop.epoch_loop.evaluation_step,
) as mocked:
trainer.fit(model)
assert trainer.num_training_batches == limit_train_batches
assert trainer.num_val_batches == [limit_val_batches] * len(trainer.val_dataloaders)
assert mocked.call_count == limit_val_batches * len(trainer.val_dataloaders)
with patch.object(
trainer.test_loop.epoch_loop,
"evaluation_step",
wraps=trainer.test_loop.epoch_loop.evaluation_step,
) as mocked:
trainer.test(model)
test_dataloader_lengths = [len(x) for x in model.test_dataloader()]
if limit_test_batches > 1e10:
# when the limit is greater than the number of test batches it should be the num in loaders
assert trainer.num_test_batches == test_dataloader_lengths
assert mocked.call_count == sum(test_dataloader_lengths)
else:
assert trainer.num_test_batches == [limit_test_batches] * len(trainer.test_dataloaders)
assert mocked.call_count == limit_test_batches * len(trainer.test_dataloaders)
@pytest.mark.parametrize("fast_dev_run", [True, 1, 3, -1, "temp"])
def test_dataloaders_with_fast_dev_run(tmpdir, fast_dev_run):
"""Verify num_batches for train, val & test dataloaders passed with fast_dev_run."""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__multiple_mixed_length
model.test_dataloader = model.test_dataloader__multiple_mixed_length
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
model.test_step = model.test_step__multiple_dataloaders
model.test_epoch_end = model.test_epoch_end__multiple_dataloaders
trainer_options = dict(default_root_dir=tmpdir, max_epochs=2, fast_dev_run=fast_dev_run)
if fast_dev_run == "temp":
with pytest.raises(MisconfigurationException, match="either a bool or an int"):
Trainer(**trainer_options)
elif fast_dev_run == -1:
with pytest.raises(MisconfigurationException, match="should be >= 0"):
Trainer(**trainer_options)
else:
trainer = Trainer(**trainer_options)
# fast_dev_run is set to True when it is 1
if fast_dev_run == 1:
fast_dev_run = True
assert trainer.fast_dev_run is fast_dev_run
if fast_dev_run is True:
fast_dev_run = 1
assert trainer.limit_train_batches == fast_dev_run
assert trainer.limit_val_batches == fast_dev_run
assert trainer.limit_test_batches == fast_dev_run
assert trainer.num_sanity_val_steps == 0
assert trainer.max_epochs == 1
trainer.fit(model)
assert trainer.enable_validation
assert trainer.num_training_batches == fast_dev_run
assert trainer.num_val_batches == [fast_dev_run] * len(trainer.val_dataloaders)
trainer.test(model)
assert trainer.num_test_batches == [fast_dev_run] * len(trainer.test_dataloaders)
@pytest.mark.parametrize("ckpt_path", [None, "best", "specific"])
def test_mixing_of_dataloader_options(tmpdir, ckpt_path):
"""Verify that dataloaders can be passed to fit."""
model = EvalModelTemplate()
trainer_options = dict(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=0.2)
# fit model
trainer = Trainer(**trainer_options)
trainer.fit(model, val_dataloaders=model.dataloader(train=False))
assert trainer.state.finished, f"Training failed with {trainer.state}"
# fit model
trainer = Trainer(**trainer_options)
trainer.fit(model, val_dataloaders=model.dataloader(train=False))
assert trainer.state.finished, f"Training failed with {trainer.state}"
if ckpt_path == "specific":
ckpt_path = trainer.checkpoint_callback.best_model_path
trainer.test(test_dataloaders=model.dataloader(train=False), ckpt_path=ckpt_path)
assert len(trainer.val_dataloaders) == 1, f"`val_dataloaders` not initiated properly, got {trainer.val_dataloaders}"
assert (
len(trainer.test_dataloaders) == 1
), f"`test_dataloaders` not initiated properly, got {trainer.test_dataloaders}"
def test_train_inf_dataloader_error(tmpdir):
"""Test inf train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__infinite
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, val_check_interval=0.5)
with pytest.raises(MisconfigurationException, match="using an IterableDataset"):
trainer.fit(model)
def test_val_inf_dataloader_error(tmpdir):
"""Test inf train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__infinite
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.5)
with pytest.raises(MisconfigurationException, match="using an IterableDataset"):
trainer.fit(model)
def test_test_inf_dataloader_error(tmpdir):
"""Test inf train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.test_dataloader = model.test_dataloader__infinite
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_test_batches=0.5)
with pytest.raises(MisconfigurationException, match="using an IterableDataset"):
trainer.test(model)
@pytest.mark.parametrize("check_interval", [50, 1.0])
def test_inf_train_dataloader(tmpdir, check_interval):
"""Test inf train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__infinite
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, val_check_interval=check_interval)
trainer.fit(model)
# verify training completed
assert trainer.state.finished, f"Training failed with {trainer.state}"
@pytest.mark.parametrize("check_interval", [1.0])
def test_inf_val_dataloader(tmpdir, check_interval):
"""Test inf val data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__infinite
# logger file to get meta
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, val_check_interval=check_interval)
trainer.fit(model)
# verify training completed
assert trainer.state.finished, f"Training failed with {trainer.state}"
def test_error_on_zero_len_dataloader(tmpdir):
"""Test that error is raised if a zero-length dataloader is defined."""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__zero_length
# fit model
with pytest.raises(ValueError):
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=0.1,
limit_val_batches=0.1,
limit_test_batches=0.1,
)
trainer.fit(model)
@RunIf(skip_windows=True)
@pytest.mark.parametrize("ckpt_path", (None, "best", "specific"))
@pytest.mark.parametrize("stage", ("train", "test", "val"))
@patch("pytorch_lightning.trainer.data_loading.multiprocessing.cpu_count", return_value=4)
def test_warning_with_few_workers(_, tmpdir, ckpt_path, stage):
"""Test that error is raised if dataloader with only a few workers is used."""
model = BoringModel()
train_dl = model.train_dataloader()
train_dl.num_workers = 0
val_dl = model.val_dataloader()
val_dl.num_workers = 0
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=0.2)
with pytest.warns(
UserWarning,
match=f'The dataloader, {stage}_dataloader{" 0" if stage != "train" else ""}, does not have many workers',
):
if stage == "test":
if ckpt_path in ("specific", "best"):
trainer.fit(model, train_dataloader=train_dl, val_dataloaders=val_dl)
ckpt_path = trainer.checkpoint_callback.best_model_path if ckpt_path == "specific" else ckpt_path
trainer.test(model, test_dataloaders=train_dl, ckpt_path=ckpt_path)
else:
trainer.fit(model, train_dataloader=train_dl, val_dataloaders=val_dl)
@RunIf(skip_windows=True)
@pytest.mark.parametrize("ckpt_path", (None, "best", "specific"))
@pytest.mark.parametrize("stage", ("train", "test", "val"))
@patch("pytorch_lightning.trainer.data_loading.multiprocessing.cpu_count", return_value=4)
def test_warning_with_few_workers_multi_loader(_, tmpdir, ckpt_path, stage):
"""Test that error is raised if dataloader with only a few workers is used."""
model = EvalModelTemplate()
model.training_step = model.training_step__multiple_dataloaders
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
model.test_step = model.test_step__multiple_dataloaders
model.test_epoch_end = model.test_epoch_end__multiple_dataloaders
val_dl = model.dataloader(train=False)
val_dl.num_workers = 0
train_dl = model.dataloader(train=False)
train_dl.num_workers = 0
train_multi_dl = {"a_b": [train_dl, train_dl], "c_d_e": [train_dl, train_dl, train_dl]}
val_multi_dl = [val_dl, val_dl]
test_multi_dl = [train_dl, train_dl]
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=0.2)
with pytest.warns(
UserWarning,
match=f'The dataloader, {stage}_dataloader{" 0" if stage != "train" else ""}, does not have many workers',
):
if stage == "test":
if ckpt_path in ("specific", "best"):
trainer.fit(model, train_dataloader=train_multi_dl, val_dataloaders=val_multi_dl)
ckpt_path = trainer.checkpoint_callback.best_model_path if ckpt_path == "specific" else ckpt_path
trainer.test(model, test_dataloaders=test_multi_dl, ckpt_path=ckpt_path)
else:
trainer.fit(model, train_dataloader=train_multi_dl, val_dataloaders=val_multi_dl)
class NumpyRandomDataset(Dataset):
# this datset uses numpy instead of torch to produce random numbers
size = 16
def __getitem__(self, index):
return numpy.random.randint(0, 100, 3)
def __len__(self):
return self.size
def _user_worker_init_fn(_):
pass
@RunIf(max_torch="1.8.9")
def test_missing_worker_init_fn():
"""Test that naive worker seed initialization leads to undesired random state in subprocesses.
PyTorch 1.9+ does not have this issue.
"""
dataset = NumpyRandomDataset()
seed_everything(0)
dataloader = DataLoader(dataset, batch_size=2, num_workers=2, shuffle=False)
batches0 = torch.cat(list(dataloader))
seed_everything(0)
dataloader = DataLoader(dataset, batch_size=2, num_workers=2, shuffle=False)
batches1 = torch.cat(list(dataloader))
is_duplicated = len(torch.unique(batches1, dim=0)) < len(dataset)
is_deterministic = torch.eq(batches0, batches1).all()
# depending on the OS, we either have
# 1) the same seed in all worker proceses, producing duplicate samples / augmentations, or
# 2) different seeds in each worker process, but they are not derived from the seed of the main process
assert not is_deterministic or is_duplicated
def test_auto_add_worker_init_fn():
"""Test Trainer adds a default worker_init_fn to the dataloader when seed_everything() is used."""
dataset = Mock()
dataloader = DataLoader(dataset)
trainer = Trainer()
# without pl.seed_everything()
trainer.auto_add_worker_init_fn(dataloader)
assert dataloader.worker_init_fn is None
# with forcefully avoiding it
seed_everything(0, workers=False)
trainer.auto_add_worker_init_fn(dataloader)
assert dataloader.worker_init_fn is None
# when user already has a worker_init_fn
user_function = _user_worker_init_fn
dataloader.worker_init_fn = user_function
trainer.auto_add_worker_init_fn(dataloader)
assert dataloader.worker_init_fn is user_function
dataloader.worker_init_fn = None
# main use case
seed_everything(0, workers=True)
trainer.auto_add_worker_init_fn(dataloader)
assert dataloader.worker_init_fn is not None
class MultiProcessModel(BoringModel):
def __init__(self):
super().__init__()
self.batches_seen = []
def training_step(self, batch, batch_idx):
self.batches_seen.append(batch)
def training_epoch_end(self, outputs):
world_size = 2
num_samples = NumpyRandomDataset.size
all_batches = torch.cat(self.batches_seen)
all_batches = self.all_gather(all_batches)
assert all_batches.shape[0] == world_size
all_batches = all_batches.view(-1, 3)
assert len(torch.unique(all_batches, dim=0)) == num_samples
@RunIf(min_gpus=2)
def test_auto_add_worker_init_fn_distributed(tmpdir, monkeypatch):
"""Test that the lightning worker_init_fn takes care of dataloaders in multi-gpu/multi-node training."""
dataset = NumpyRandomDataset()
num_workers = 2
batch_size = 2
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
seed_everything(0, workers=True)
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, gpus=2, accelerator="ddp_spawn")
model = MultiProcessModel()
model.val_dataloader = None
trainer.fit(model, train_dataloader=dataloader)
def test_warning_with_small_dataloader_and_logging_interval(tmpdir):
"""Test that a warning message is shown if the dataloader length is too short for the chosen logging
interval."""
model = BoringModel()
dataloader = DataLoader(RandomDataset(32, length=10))
model.train_dataloader = lambda: dataloader
with pytest.warns(UserWarning, match=r"The number of training samples \(10\) is smaller than the logging interval"):
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, log_every_n_steps=11)
trainer.fit(model)
with pytest.warns(UserWarning, match=r"The number of training samples \(1\) is smaller than the logging interval"):
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, log_every_n_steps=2, limit_train_batches=1)
trainer.fit(model)
def test_warning_with_iterable_dataset_and_len(tmpdir):
"""Tests that a warning message is shown when an IterableDataset defines `__len__`."""
model = BoringModel()
original_dataset = model.train_dataloader().dataset
class IterableWithoutLen(IterableDataset):
def __iter__(self):
return iter(original_dataset)
class IterableWithLen(IterableWithoutLen):
def __len__(self):
return len(original_dataset)
# with __len__ defined
dataloader = DataLoader(IterableWithLen(), batch_size=16)
assert has_len(dataloader)
assert has_iterable_dataset(dataloader)
trainer = Trainer(default_root_dir=tmpdir, max_steps=3)
with pytest.warns(UserWarning, match="Your `IterableDataset` has `__len__` defined."):
trainer.validate(model, val_dataloaders=[dataloader])
with pytest.warns(UserWarning, match="Your `IterableDataset` has `__len__` defined."):
trainer.fit(model, train_dataloader=dataloader, val_dataloaders=[dataloader])
with pytest.warns(UserWarning, match="Your `IterableDataset` has `__len__` defined."):
trainer.test(model, test_dataloaders=[dataloader])
with pytest.warns(UserWarning, match="Your `IterableDataset` has `__len__` defined."):
trainer.predict(model, dataloaders=[dataloader])
# without __len__ defined
dataloader = DataLoader(IterableWithoutLen(), batch_size=16)
assert not has_len(dataloader)
assert has_iterable_dataset(dataloader)
trainer = Trainer(default_root_dir=tmpdir, max_steps=3)
trainer.validate(model, val_dataloaders=dataloader)
trainer.fit(model, train_dataloader=dataloader, val_dataloaders=[dataloader])
trainer.test(model, test_dataloaders=dataloader)
trainer.predict(model, dataloaders=dataloader)
@pytest.mark.parametrize("yield_at_all", (False, True))
def test_iterable_dataset_stop_iteration_at_epoch_beginning(yield_at_all):
"""Test that the training loop skips execution if the iterator is empty from the start."""
class TestDataset(IterableDataset):
def __init__(self, gen):
self.gen = gen
def __iter__(self):
return iter(self.gen())
class TestModel(BoringModel):
def gen(self):
# produce data in epoch 0, no data otherwise
if yield_at_all and self.current_epoch == 0:
yield torch.rand(32)
yield torch.rand(32)
yield torch.rand(32)
model = TestModel()
train_dataloader = DataLoader(TestDataset(model.gen), batch_size=2)
trainer = Trainer(
default_root_dir=os.getcwd(), max_epochs=2, weights_summary=None # we expect the second epoch to be skipped
)
trainer.fit(model, train_dataloader=train_dataloader)
assert trainer.global_step == 2 * yield_at_all
assert trainer.current_epoch == 1
class DistribSamplerCallback(Callback):
def __init__(self, expected_seeds=(0, 0, 0)):
self.expected_seed = expected_seeds
def on_train_start(self, trainer, pl_module):
train_sampler = trainer.train_dataloader.sampler
assert isinstance(train_sampler, DistributedSampler)
assert train_sampler.shuffle
assert train_sampler.seed == self.expected_seed[0]
def on_validation_start(self, trainer, pl_module):
val_sampler = trainer.val_dataloaders[0].sampler
assert isinstance(val_sampler, DistributedSampler)
assert not val_sampler.shuffle
assert val_sampler.seed == self.expected_seed[1]
def on_test_start(self, trainer, pl_module):
test_sampler = trainer.test_dataloaders[0].sampler
assert isinstance(test_sampler, DistributedSampler)
assert not test_sampler.shuffle
assert test_sampler.seed == self.expected_seed[2]
@RunIf(min_gpus=2, skip_windows=True)
def test_dataloader_distributed_sampler(tmpdir):
"""Test DistributedSampler and it's arguments for DDP backend."""
seed_everything(123)
model = EvalModelTemplate()
trainer = Trainer(
gpus=[0, 1],
num_nodes=1,
accelerator="ddp_spawn",
default_root_dir=tmpdir,
max_steps=1,
callbacks=[DistribSamplerCallback(expected_seeds=(123, 123, 123))],
)
trainer.fit(model)
trainer.test(model)
class ModelWithDataLoaderDistributedSampler(EvalModelTemplate):
def train_dataloader(self):
dataloader = super().train_dataloader()
dist_sampler = DistributedSampler(dataloader.dataset, shuffle=True, seed=11)
return DataLoader(
dataloader.dataset, batch_size=self.batch_size, drop_last=False, sampler=dist_sampler, shuffle=False
)
@RunIf(min_gpus=2, skip_windows=True)
def test_dataloader_distributed_sampler_already_attached(tmpdir):
"""Test DistributedSampler and it's arguments for DDP backend when DistSampler already included on
dataloader."""
seed_everything(123)
model = ModelWithDataLoaderDistributedSampler()
trainer = Trainer(
gpus=[0, 1],
num_nodes=1,
accelerator="ddp_spawn",
default_root_dir=tmpdir,
max_steps=100,
callbacks=[DistribSamplerCallback(expected_seeds=(11, 123, 0))],
replace_sampler_ddp=True,
)
trainer.fit(model)
assert trainer.state.finished, "DDP Training failed"
@RunIf(min_gpus=3)
def test_batch_size_smaller_than_num_gpus(tmpdir):
# we need at least 3 gpus for this test
num_gpus = 3
batch_size = 3
class CurrentTestModel(EvalModelTemplate):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
# batch norm doesn't work with batch size 1, we replace it
self.c_d1_bn = torch.nn.ReLU()
def training_step(self, *args, **kwargs):
output = super().training_step(*args, **kwargs)
loss = output["loss"]
# we make sure to add some metrics to the output dict,
# this is essential for this test
output["progress_bar"] = {"train_loss": loss}
return output
def train_dataloader(self):
dataloader = super().train_dataloader()
# construct a dataset with a size that is not divisible by num_gpus
# therefore the last batch will have a size < num_gpus
size = num_gpus * batch_size + (num_gpus - 1)
dataset = Subset(dataloader.dataset, range(size))
dataloader = DataLoader(dataset, batch_size=self.batch_size, drop_last=False)
return dataloader
hparams = EvalModelTemplate.get_default_hparams()
hparams["batch_size"] = batch_size
model = CurrentTestModel(**hparams)
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0, gpus=num_gpus
)
# we expect the reduction for the metrics also to happen on the last batch
# where we will get fewer metrics than gpus
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
@pytest.mark.parametrize(
["multiple_trainloader_mode", "num_training_batches"],
[pytest.param("min_size", 5), pytest.param("max_size_cycle", 10)],
)
def test_fit_multiple_train_loaders(tmpdir, multiple_trainloader_mode, num_training_batches):
"""Integration test for multple train loaders."""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__multiple_mapping
# todo: add also `train_dataloader__multiple_sequence`
model.training_step = model.training_step__multiple_dataloaders
trainer = Trainer(max_epochs=1, default_root_dir=tmpdir, multiple_trainloader_mode=multiple_trainloader_mode)
trainer.fit(model)
# verify the num_training_batches according to the multiple_trainloader_mode
assert num_training_batches == trainer.num_training_batches
@pytest.mark.parametrize("check_interval", [1.0])
def test_val_dataloader_not_implemented_error(tmpdir, check_interval):
"""Test not_implemented_error data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__not_implemented_error
# logger file to get meta
trainer = Trainer(default_root_dir=tmpdir, max_steps=5, max_epochs=1, val_check_interval=check_interval)
trainer.fit(model)
# verify training completed
assert trainer.state.finished, f"Training failed with {trainer.state}"
@pytest.mark.parametrize("check_interval", [50, 1.0])
def test_train_dataloader_not_implemented_error(tmpdir, check_interval):
"""Test not_implemented_error train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__not_implemented_error
model.val_dataloader = model.val_dataloader__not_implemented_error
trainer = Trainer(default_root_dir=tmpdir, max_steps=5, max_epochs=1, val_check_interval=check_interval)
trainer.fit(model)
# verify training completed
assert trainer.state.finished, f"Training failed with {trainer.state}"
def test_train_dataloader_not_implemented_error_failed(tmpdir):
"""Test not_implemented_error train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__not_implemented_error
trainer = Trainer(default_root_dir=tmpdir, max_steps=5, max_epochs=1, val_check_interval=0.5)
with pytest.raises(MisconfigurationException, match="using an IterableDataset"):
trainer.fit(model)
def test_val_dataloader_not_implemented_error_failed(tmpdir):
"""Test not_implemented_error train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__not_implemented_error
trainer = Trainer(default_root_dir=tmpdir, max_steps=5, max_epochs=1, limit_val_batches=0.5)
with pytest.raises(MisconfigurationException, match="using an IterableDataset"):
trainer.fit(model)
def test_test_dataloader_not_implemented_error_failed(tmpdir):
"""Test not_implemented_error train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.test_dataloader = model.test_dataloader__not_implemented_error
trainer = Trainer(default_root_dir=tmpdir, max_steps=5, max_epochs=1, limit_test_batches=0.5)
with pytest.raises(MisconfigurationException, match="using an IterableDataset"):
trainer.test(model)
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
def test_dataloaders_load_only_once(tmpdir):
model = EvalModelTemplate()
# logger file to get meta
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=0.3, limit_val_batches=0.3, max_epochs=3)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert len(trainer.dev_debugger.val_dataloader_calls) == 1
assert len(trainer.dev_debugger.test_dataloader_calls) == 0
assert len(trainer.dev_debugger.train_dataloader_calls) == 1
# verify the sequence
calls = trainer.dev_debugger.dataloader_sequence_calls
expected_sequence = ["val_dataloader", "train_dataloader"]
for call, expected in zip(calls, expected_sequence):
assert call["name"] == expected
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
def test_dataloaders_load_only_once_val_interval(tmpdir):
model = EvalModelTemplate()
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=10,
limit_val_batches=10,
val_check_interval=0.3,
reload_dataloaders_every_n_epochs=True,
max_epochs=3,
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
trainer.test()
assert len(trainer.dev_debugger.val_dataloader_calls) == 10
assert len(trainer.dev_debugger.test_dataloader_calls) == 1
assert len(trainer.dev_debugger.train_dataloader_calls) == 3
# verify the sequence
calls = trainer.dev_debugger.dataloader_sequence_calls
expected_sequence = [
"val_dataloader",
"train_dataloader",
"val_dataloader",
"val_dataloader",
"val_dataloader",
"train_dataloader",
"val_dataloader",
"val_dataloader",
"val_dataloader",
"train_dataloader",
"val_dataloader",
"val_dataloader",
"val_dataloader",
"test_dataloader",
]
for call, expected in zip(calls, expected_sequence):
assert call["name"] == expected
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
def test_dataloaders_load_only_once_no_sanity_check(tmpdir):
model = EvalModelTemplate()
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir, limit_train_batches=0.3, limit_val_batches=0.3, num_sanity_val_steps=0, max_epochs=3
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert len(trainer.dev_debugger.val_dataloader_calls) == 1
assert len(trainer.dev_debugger.test_dataloader_calls) == 0
assert len(trainer.dev_debugger.train_dataloader_calls) == 1
# verify the sequence
calls = trainer.dev_debugger.dataloader_sequence_calls
expected_sequence = ["train_dataloader", "val_dataloader"]
for call, expected in zip(calls, expected_sequence):
assert call["name"] == expected
@pytest.mark.parametrize("n", [1, 2])
def test_dataloaders_load_every_n_epochs(tmpdir, n):
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=0.3,
limit_val_batches=0.3,
reload_dataloaders_every_n_epochs=n,
max_epochs=3,
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
trainer.test()
# verify the sequence
calls = trainer.dev_debugger.dataloader_sequence_calls
expected_sequence = ["val_dataloader"]
if n == 1:
expected_sequence += ["train_dataloader", "val_dataloader"] * 3
elif n == 2:
expected_sequence += ["train_dataloader", "val_dataloader"] * 2
expected_sequence += ["test_dataloader"]
for call, expected in zip(calls, expected_sequence):
assert call["name"] == expected
@pytest.mark.parametrize("n", ["test", -1])
def test_dataloaders_load_every_n_epochs_exception(tmpdir, n):
with pytest.raises(MisconfigurationException, match="should be an int >"):
Trainer(default_root_dir=tmpdir, reload_dataloaders_every_n_epochs=n)
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
def test_dataloaders_load_every_epoch_no_sanity_check(tmpdir):
class TestModel(BoringModel):
def validation_step(self, batch, batch_idx):
self.log("dummy_val", 5.0)
return super().validation_step(batch, batch_idx)
model = TestModel()
# This callback tests that the evaluation metrics are available by the time we run checkpointing
checkpoint_callback = ModelCheckpoint(monitor="dummy_val", save_top_k=1)
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=0.3,
limit_val_batches=0.3,
num_sanity_val_steps=0,
reload_dataloaders_every_n_epochs=True,
max_epochs=3,
callbacks=[checkpoint_callback],
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
trainer.test()
assert len(trainer.dev_debugger.val_dataloader_calls) == 4
assert len(trainer.dev_debugger.train_dataloader_calls) == 3
assert len(trainer.dev_debugger.test_dataloader_calls) == 1
# verify the sequence
calls = trainer.dev_debugger.dataloader_sequence_calls
expected_sequence = [
"train_dataloader",
"val_dataloader",
# This has subsequent calls to val_dataloader
# because the training loop runs the evaluation loop,
# which reloads the val dataloader again.
# We cannot yet rely on trainer.current_epoch=0 to skip reloading
# the val dataloader on the first epoch because this only tracks the training epoch
# meaning multiple passes through the validation data within a single training epoch
# would not have the dataloader reloaded.
# This breaks the assumption behind reload_dataloaders_every_epoch=True
"val_dataloader",
"train_dataloader",
"val_dataloader",
"train_dataloader",
"val_dataloader",
"test_dataloader",
]
for call, expected in zip(calls, expected_sequence):
assert call["name"] == expected
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
def test_dataloaders_load_only_once_passed_loaders(tmpdir):
model = EvalModelTemplate()
train_loader = model.train_dataloader()
model.train_dataloader = None
val_loader = model.val_dataloader()
model.val_dataloader = None
test_loader = model.test_dataloader()
model.test_dataloader = None
# logger file to get meta
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=0.3, limit_val_batches=0.3, max_epochs=3)
trainer.fit(model, train_loader, val_loader)
assert trainer.state.finished, f"Training failed with {trainer.state}"
trainer.test(test_dataloaders=test_loader)
assert len(trainer.dev_debugger.val_dataloader_calls) == 1
assert len(trainer.dev_debugger.test_dataloader_calls) == 1
assert len(trainer.dev_debugger.train_dataloader_calls) == 1
# verify the sequence
calls = trainer.dev_debugger.dataloader_sequence_calls
expected_sequence = ["val_dataloader", "train_dataloader"]
for call, expected in zip(calls, expected_sequence):
assert call["name"] == expected
def test_dataloaders_reset_and_attach(tmpdir):
"""Test that repeated calls to Trainer.{fit,validate,test,predict} properly reset and dataloaders before
attaching the new one."""
# the assertions compare the datasets and not dataloaders since we patch and replace the samplers
dataloader_0 = DataLoader(dataset=RandomDataset(32, 64))
dataloader_1 = DataLoader(dataset=RandomDataset(32, 64))
dataloader_2 = DataLoader(dataset=RandomDataset(32, 64))
dataloader_3 = DataLoader(dataset=RandomDataset(32, 64))
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1)
# 1st fit
trainer.fit(model, train_dataloaders=dataloader_0, val_dataloaders=dataloader_1)
assert trainer.train_dataloader.loaders.dataset is dataloader_0.dataset
assert trainer.val_dataloaders[0].dataset is dataloader_1.dataset
# 2nd fit
trainer.fit(model, train_dataloaders=dataloader_2, val_dataloaders=dataloader_3)
assert trainer.train_dataloader.loaders.dataset is dataloader_2.dataset
assert trainer.val_dataloaders[0].dataset is dataloader_3.dataset
# 1st validate
trainer.validate(model, dataloaders=dataloader_0)
assert trainer.val_dataloaders[0].dataset is dataloader_0.dataset
# 2nd validate
trainer.validate(model, dataloaders=dataloader_1)
assert trainer.val_dataloaders[0].dataset is dataloader_1.dataset
# 1st test
trainer.test(model, dataloaders=dataloader_0)
assert trainer.test_dataloaders[0].dataset is dataloader_0.dataset
# 2nd test
trainer.test(model, dataloaders=dataloader_1)
assert trainer.test_dataloaders[0].dataset is dataloader_1.dataset
# 1st predict
trainer.predict(model, dataloaders=dataloader_0)
assert trainer.predict_dataloaders[0].dataset is dataloader_0.dataset
# 2nd predict
trainer.predict(model, dataloaders=dataloader_1)
assert trainer.predict_dataloaders[0].dataset is dataloader_1.dataset
@pytest.mark.parametrize("multiple_trainloader_mode", ["min_size", "max_size_cycle"])
def test_correct_dataloader_idx_in_hooks(tmpdir, multiple_trainloader_mode):
"""Check the correct dataloader_idx inside hooks."""
class CustomBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.val_call_count = 0
self.test_call_count = 0
def assert_dataloader_idx_hook(self, dataloader_idx):
if self.trainer.training:
assert dataloader_idx == 0
elif self.trainer.validating:
assert dataloader_idx == (0 if self.val_call_count <= 5 else 1)
elif self.trainer.testing:
assert dataloader_idx == (0 if self.test_call_count <= 5 else 1)
def transfer_batch_to_device(self, batch, device, dataloader_idx):
self.assert_dataloader_idx_hook(dataloader_idx)
return super().transfer_batch_to_device(batch, device, dataloader_idx)
def on_before_batch_transfer(self, batch, dataloader_idx):
# incrementing here since this is the first hook called at each step
if self.trainer.validating:
self.val_call_count += 1
elif self.trainer.testing:
self.test_call_count += 1
self.assert_dataloader_idx_hook(dataloader_idx)
return super().on_before_batch_transfer(batch, dataloader_idx)
def on_after_batch_transfer(self, batch, dataloader_idx):
self.assert_dataloader_idx_hook(dataloader_idx)
return super().on_after_batch_transfer(batch, dataloader_idx)
def training_step(self, batch, batch_idx):
return super().training_step(batch["a"], batch_idx)
def validation_step(self, batch, batch_idx, dataloader_idx):
self.assert_dataloader_idx_hook(dataloader_idx)
out = super().validation_step(batch, batch_idx)
loss = out.pop("x")
out[f"val_loss_{dataloader_idx}"] = loss
return out
def test_step(self, batch, batch_idx, dataloader_idx):
self.assert_dataloader_idx_hook(dataloader_idx)
out = super().test_step(batch, batch_idx)
loss = out.pop("y")
out[f"test_loss_{dataloader_idx}"] = loss
return out
def predict(self, batch, batch_idx, dataloader_idx):
self.assert_dataloader_idx_hook(dataloader_idx)
return super().predict(batch, batch_idx, dataloader_idx)
def assert_epoch_end_outputs(self, outputs, mode):
assert len(outputs) == 2
assert all(f"{mode}_loss_0" in x for x in outputs[0])
assert all(f"{mode}_loss_1" in x for x in outputs[1])
def validation_epoch_end(self, outputs):
self.assert_epoch_end_outputs(outputs, mode="val")
def test_epoch_end(self, outputs):
self.assert_epoch_end_outputs(outputs, mode="test")
def train_dataloader(self):
return {"a": DataLoader(RandomDataset(32, 64)), "b": DataLoader(RandomDataset(32, 64))}
def val_dataloader(self):
return [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))]
def test_dataloader(self):
return [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))]
def predict_dataloader(self):
return [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))]
model = CustomBoringModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=5, multiple_trainloader_mode=multiple_trainloader_mode)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
trainer.test(model)
preds = trainer.predict(model)
assert len(preds) == 2
assert all(len(x) == 5 for x in preds)
def test_request_dataloader(tmpdir):
"""This test asserts dataloader can be modified and properly set to the trainer."""
class DataLoaderWrapper:
def __init__(self, loader):
self.loader = loader
self._iter = iter(self.loader)
def __iter__(self):
self._iter = iter(self.loader)
return self._iter
def __next__(self):
return next(self._iter)
class DataLoaderFunc:
def __init__(self, loader):
self.loader = loader
def __call__(self):
return self.loader
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.on_train_dataloader_called = False
self.on_train_batch_start_called = False
self.on_val_dataloader_called = False
self.on_val_batch_start_called = False
def on_train_dataloader(self) -> None:
loader = self.train_dataloader()
self.train_dataloader = DataLoaderFunc(DataLoaderWrapper(loader))
self.on_train_dataloader_called = True
def on_train_batch_start(self, batch, batch_idx: int, dataloader_idx: int) -> None:
assert isinstance(self.trainer.train_dataloader.loaders, DataLoaderWrapper)
self.on_train_batch_start_called = True
def on_val_dataloader(self) -> None:
loader = self.val_dataloader()
self.val_dataloader = DataLoaderFunc(DataLoaderWrapper(loader))
self.on_val_dataloader_called = True
def on_validation_batch_start(self, batch, batch_idx: int, dataloader_idx: int) -> None:
assert isinstance(self.trainer.val_dataloaders[0], DataLoaderWrapper)
self.on_val_batch_start_called = True
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=1)
model = TestModel()
trainer.fit(model)
trainer.test(model)
assert model.on_train_dataloader_called
assert model.on_train_batch_start_called
assert model.on_val_dataloader_called
assert model.on_val_batch_start_called