198 lines
6.7 KiB
Python
198 lines
6.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tests to ensure that the behaviours related to multiple optimizers works."""
|
|
import pytest
|
|
import torch
|
|
|
|
import pytorch_lightning as pl
|
|
from tests.helpers.boring_model import BoringModel
|
|
|
|
|
|
class MultiOptModel(BoringModel):
|
|
def configure_optimizers(self):
|
|
opt_a = torch.optim.SGD(self.layer.parameters(), lr=0.001)
|
|
opt_b = torch.optim.SGD(self.layer.parameters(), lr=0.001)
|
|
return opt_a, opt_b
|
|
|
|
|
|
def test_unbalanced_logging_with_multiple_optimizers(tmpdir):
|
|
"""This tests ensures reduction works in unbalanced logging settings."""
|
|
|
|
class TestModel(MultiOptModel):
|
|
|
|
actual = {0: [], 1: []}
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
out = super().training_step(batch, batch_idx)
|
|
loss = out["loss"]
|
|
self.log(f"loss_{optimizer_idx}", loss, on_epoch=True)
|
|
self.actual[optimizer_idx].append(loss)
|
|
return out
|
|
|
|
model = TestModel()
|
|
model.training_epoch_end = None
|
|
|
|
# Initialize a trainer
|
|
trainer = pl.Trainer(
|
|
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=5, limit_val_batches=5, weights_summary=None
|
|
)
|
|
trainer.fit(model)
|
|
|
|
for k, v in model.actual.items():
|
|
assert torch.equal(trainer.callback_metrics[f"loss_{k}_step"], v[-1])
|
|
# test loss is properly reduced
|
|
torch.testing.assert_allclose(trainer.callback_metrics[f"loss_{k}_epoch"], torch.tensor(v).mean())
|
|
|
|
|
|
def test_multiple_optimizers(tmpdir):
|
|
class TestModel(MultiOptModel):
|
|
|
|
seen = [False, False]
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
self.seen[optimizer_idx] = True
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
# outputs should be an array with an entry per optimizer
|
|
assert len(outputs) == 2
|
|
|
|
model = TestModel()
|
|
model.val_dataloader = None
|
|
|
|
trainer = pl.Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
max_epochs=1,
|
|
log_every_n_steps=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert all(model.seen)
|
|
|
|
|
|
def test_multiple_optimizers_manual(tmpdir):
|
|
class TestModel(MultiOptModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.automatic_optimization = False
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
self.training_step_called = True
|
|
|
|
# manual optimization
|
|
opt_a, opt_b = self.optimizers()
|
|
loss_1 = self.step(batch[0])
|
|
|
|
# fake generator
|
|
self.manual_backward(loss_1)
|
|
opt_a.step()
|
|
opt_a.zero_grad()
|
|
|
|
# fake discriminator
|
|
loss_2 = self.step(batch[0])
|
|
self.manual_backward(loss_2)
|
|
opt_b.step()
|
|
opt_b.zero_grad()
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
# outputs is empty as training_step does not return
|
|
# and it is not automatic optimization
|
|
assert len(outputs) == 0
|
|
|
|
model = TestModel()
|
|
model.val_dataloader = None
|
|
|
|
trainer = pl.Trainer(
|
|
default_root_dir=tmpdir, limit_train_batches=2, max_epochs=1, log_every_n_steps=1, weights_summary=None
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert model.training_step_called
|
|
|
|
|
|
def test_multiple_optimizers_no_opt_idx_argument(tmpdir):
|
|
"""Test that an error is raised if no optimizer_idx is present when multiple optimizeres are passed in case of
|
|
automatic_optimization."""
|
|
|
|
class TestModel(MultiOptModel):
|
|
def training_step(self, batch, batch_idx):
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
trainer = pl.Trainer(default_root_dir=tmpdir, fast_dev_run=2)
|
|
|
|
with pytest.raises(ValueError, match="`training_step` is missing the `optimizer_idx`"):
|
|
trainer.fit(TestModel())
|
|
|
|
|
|
def test_custom_optimizer_step_with_multiple_optimizers(tmpdir):
|
|
"""This tests ensures custom optimizer_step works, even when optimizer.step is not called for a particular
|
|
optimizer."""
|
|
|
|
class TestModel(BoringModel):
|
|
training_step_called = [0, 0]
|
|
optimizer_step_called = [0, 0]
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer_a = torch.nn.Linear(32, 2)
|
|
self.layer_b = torch.nn.Linear(32, 2)
|
|
|
|
def configure_optimizers(self):
|
|
opt_a = torch.optim.SGD(self.layer_a.parameters(), lr=0.001)
|
|
opt_b = torch.optim.SGD(self.layer_b.parameters(), lr=0.001)
|
|
return opt_a, opt_b
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
self.training_step_called[optimizer_idx] += 1
|
|
x = self.layer_a(batch[0]) if (optimizer_idx == 0) else self.layer_b(batch[0])
|
|
loss = torch.nn.functional.mse_loss(x, torch.ones_like(x))
|
|
return loss
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
# outputs should be an array with an entry per optimizer
|
|
assert len(outputs) == 2
|
|
|
|
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, **_):
|
|
# update first optimizer every step
|
|
if optimizer_idx == 0:
|
|
self.optimizer_step_called[optimizer_idx] += 1
|
|
optimizer.step(closure=optimizer_closure)
|
|
|
|
# update second optimizer every 2 steps
|
|
if optimizer_idx == 1:
|
|
if batch_idx % 2 == 0:
|
|
self.optimizer_step_called[optimizer_idx] += 1
|
|
optimizer.step(closure=optimizer_closure)
|
|
else:
|
|
optimizer_closure()
|
|
|
|
model = TestModel()
|
|
model.val_dataloader = None
|
|
|
|
limit_train_batches = 4
|
|
trainer = pl.Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=limit_train_batches,
|
|
max_epochs=1,
|
|
log_every_n_steps=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
assert len(model.training_step_called) == len(model.optimizer_step_called) == len(model.optimizers())
|
|
assert model.training_step_called == [limit_train_batches, limit_train_batches]
|
|
assert model.optimizer_step_called == [limit_train_batches, limit_train_batches // 2]
|