lightning/tests/trainer/optimization/test_multiple_optimizers.py

198 lines
6.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests to ensure that the behaviours related to multiple optimizers works."""
import pytest
import torch
import pytorch_lightning as pl
from tests.helpers.boring_model import BoringModel
class MultiOptModel(BoringModel):
def configure_optimizers(self):
opt_a = torch.optim.SGD(self.layer.parameters(), lr=0.001)
opt_b = torch.optim.SGD(self.layer.parameters(), lr=0.001)
return opt_a, opt_b
def test_unbalanced_logging_with_multiple_optimizers(tmpdir):
"""This tests ensures reduction works in unbalanced logging settings."""
class TestModel(MultiOptModel):
actual = {0: [], 1: []}
def training_step(self, batch, batch_idx, optimizer_idx):
out = super().training_step(batch, batch_idx)
loss = out["loss"]
self.log(f"loss_{optimizer_idx}", loss, on_epoch=True)
self.actual[optimizer_idx].append(loss)
return out
model = TestModel()
model.training_epoch_end = None
# Initialize a trainer
trainer = pl.Trainer(
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=5, limit_val_batches=5, weights_summary=None
)
trainer.fit(model)
for k, v in model.actual.items():
assert torch.equal(trainer.callback_metrics[f"loss_{k}_step"], v[-1])
# test loss is properly reduced
torch.testing.assert_allclose(trainer.callback_metrics[f"loss_{k}_epoch"], torch.tensor(v).mean())
def test_multiple_optimizers(tmpdir):
class TestModel(MultiOptModel):
seen = [False, False]
def training_step(self, batch, batch_idx, optimizer_idx):
self.seen[optimizer_idx] = True
return super().training_step(batch, batch_idx)
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
model = TestModel()
model.val_dataloader = None
trainer = pl.Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
assert all(model.seen)
def test_multiple_optimizers_manual(tmpdir):
class TestModel(MultiOptModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
self.training_step_called = True
# manual optimization
opt_a, opt_b = self.optimizers()
loss_1 = self.step(batch[0])
# fake generator
self.manual_backward(loss_1)
opt_a.step()
opt_a.zero_grad()
# fake discriminator
loss_2 = self.step(batch[0])
self.manual_backward(loss_2)
opt_b.step()
opt_b.zero_grad()
def training_epoch_end(self, outputs) -> None:
# outputs is empty as training_step does not return
# and it is not automatic optimization
assert len(outputs) == 0
model = TestModel()
model.val_dataloader = None
trainer = pl.Trainer(
default_root_dir=tmpdir, limit_train_batches=2, max_epochs=1, log_every_n_steps=1, weights_summary=None
)
trainer.fit(model)
assert model.training_step_called
def test_multiple_optimizers_no_opt_idx_argument(tmpdir):
"""Test that an error is raised if no optimizer_idx is present when multiple optimizeres are passed in case of
automatic_optimization."""
class TestModel(MultiOptModel):
def training_step(self, batch, batch_idx):
return super().training_step(batch, batch_idx)
trainer = pl.Trainer(default_root_dir=tmpdir, fast_dev_run=2)
with pytest.raises(ValueError, match="`training_step` is missing the `optimizer_idx`"):
trainer.fit(TestModel())
def test_custom_optimizer_step_with_multiple_optimizers(tmpdir):
"""This tests ensures custom optimizer_step works, even when optimizer.step is not called for a particular
optimizer."""
class TestModel(BoringModel):
training_step_called = [0, 0]
optimizer_step_called = [0, 0]
def __init__(self):
super().__init__()
self.layer_a = torch.nn.Linear(32, 2)
self.layer_b = torch.nn.Linear(32, 2)
def configure_optimizers(self):
opt_a = torch.optim.SGD(self.layer_a.parameters(), lr=0.001)
opt_b = torch.optim.SGD(self.layer_b.parameters(), lr=0.001)
return opt_a, opt_b
def training_step(self, batch, batch_idx, optimizer_idx):
self.training_step_called[optimizer_idx] += 1
x = self.layer_a(batch[0]) if (optimizer_idx == 0) else self.layer_b(batch[0])
loss = torch.nn.functional.mse_loss(x, torch.ones_like(x))
return loss
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, **_):
# update first optimizer every step
if optimizer_idx == 0:
self.optimizer_step_called[optimizer_idx] += 1
optimizer.step(closure=optimizer_closure)
# update second optimizer every 2 steps
if optimizer_idx == 1:
if batch_idx % 2 == 0:
self.optimizer_step_called[optimizer_idx] += 1
optimizer.step(closure=optimizer_closure)
else:
optimizer_closure()
model = TestModel()
model.val_dataloader = None
limit_train_batches = 4
trainer = pl.Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
assert len(model.training_step_called) == len(model.optimizer_step_called) == len(model.optimizers())
assert model.training_step_called == [limit_train_batches, limit_train_batches]
assert model.optimizer_step_called == [limit_train_batches, limit_train_batches // 2]