lightning/tests/trainer/logging_/test_logger_connector.py

635 lines
23 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from unittest import mock
import pytest
import torch
from torch.utils.data import DataLoader
from torchmetrics import Accuracy, AveragePrecision
from pytorch_lightning import LightningModule
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.trainer.connectors.logger_connector.fx_validator import _FxValidator
from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers.boring_model import BoringModel, RandomDataset
from tests.helpers.runif import RunIf
from tests.models.test_hooks import get_members
def test_fx_validator(tmpdir):
funcs_name = sorted(get_members(Callback))
callbacks_func = [
"on_before_backward",
"on_after_backward",
"on_before_optimizer_step",
"on_batch_end",
"on_batch_start",
"on_before_accelerator_backend_setup",
"on_before_zero_grad",
"on_epoch_end",
"on_epoch_start",
"on_fit_end",
"on_configure_sharded_model",
"on_fit_start",
"on_init_end",
"on_init_start",
"on_keyboard_interrupt",
"on_exception",
"on_load_checkpoint",
"on_pretrain_routine_end",
"on_pretrain_routine_start",
"on_sanity_check_end",
"on_sanity_check_start",
"on_save_checkpoint",
"on_test_batch_end",
"on_test_batch_start",
"on_test_end",
"on_test_epoch_end",
"on_test_epoch_start",
"on_test_start",
"on_train_batch_end",
"on_train_batch_start",
"on_train_end",
"on_train_epoch_end",
"on_train_epoch_start",
"on_train_start",
"on_validation_batch_end",
"on_validation_batch_start",
"on_validation_end",
"on_validation_epoch_end",
"on_validation_epoch_start",
"on_validation_start",
"on_predict_batch_end",
"on_predict_batch_start",
"on_predict_end",
"on_predict_epoch_end",
"on_predict_epoch_start",
"on_predict_start",
"setup",
"teardown",
]
not_supported = [
"on_before_accelerator_backend_setup",
"on_fit_end",
"on_fit_start",
"on_configure_sharded_model",
"on_init_end",
"on_init_start",
"on_keyboard_interrupt",
"on_exception",
"on_load_checkpoint",
"on_pretrain_routine_end",
"on_pretrain_routine_start",
"on_sanity_check_end",
"on_sanity_check_start",
"on_predict_batch_end",
"on_predict_batch_start",
"on_predict_end",
"on_predict_epoch_end",
"on_predict_epoch_start",
"on_predict_start",
"on_save_checkpoint",
"on_test_end",
"on_train_end",
"on_validation_end",
"setup",
"teardown",
]
assert funcs_name == sorted(
callbacks_func
), "Detected new callback function. Need to add its logging permission to FxValidator and update this test"
validator = _FxValidator()
for func_name in funcs_name:
# This summarizes where and what is currently possible to log using `self.log`
is_stage = "train" in func_name or "test" in func_name or "validation" in func_name
is_start = "start" in func_name or "batch" in func_name
is_epoch = "epoch" in func_name
on_step = is_stage and not is_start and not is_epoch
on_epoch = True
# creating allowed condition
allowed = (
is_stage
or "batch" in func_name
or "epoch" in func_name
or "grad" in func_name
or "backward" in func_name
or "optimizer_step" in func_name
)
allowed = (
allowed
and "pretrain" not in func_name
and "predict" not in func_name
and func_name not in ["on_train_end", "on_test_end", "on_validation_end"]
)
if allowed:
validator.check_logging(fx_name=func_name, on_step=on_step, on_epoch=on_epoch)
if not is_start and is_stage:
with pytest.raises(MisconfigurationException, match="must be one of"):
validator.check_logging(fx_name=func_name, on_step=True, on_epoch=on_epoch)
else:
assert func_name in not_supported
with pytest.raises(MisconfigurationException, match="You can't"):
validator.check_logging(fx_name=func_name, on_step=on_step, on_epoch=on_epoch)
with pytest.raises(RuntimeError, match="Logging inside `foo` is not implemented"):
validator.check_logging("foo", False, False)
class HookedCallback(Callback):
def __init__(self, not_supported):
def call(hook, trainer, model=None, *_, **__):
lightning_module = trainer.lightning_module or model
if lightning_module is None:
# `on_init_{start,end}` do not have the `LightningModule` available
assert hook in ("on_init_start", "on_init_end")
return
if hook in not_supported:
with pytest.raises(MisconfigurationException, match=not_supported[hook]):
lightning_module.log("anything", 1)
else:
lightning_module.log(hook, 1)
for h in get_members(Callback):
setattr(self, h, partial(call, h))
class HookedModel(BoringModel):
def __init__(self, not_supported):
super().__init__()
pl_module_hooks = get_members(LightningModule)
pl_module_hooks.difference_update(
{
"log",
"log_dict",
# the following are problematic as they do have `self._current_fx_name` defined some times but
# not others depending on where they were called. So we cannot reliably `self.log` in them
"on_before_batch_transfer",
"transfer_batch_to_device",
"on_after_batch_transfer",
"get_progress_bar_dict",
}
)
# remove `nn.Module` hooks
module_hooks = get_members(torch.nn.Module)
pl_module_hooks.difference_update(module_hooks)
def call(hook, fn, *args, **kwargs):
out = fn(*args, **kwargs)
if hook in not_supported:
with pytest.raises(MisconfigurationException, match=not_supported[hook]):
self.log("anything", 1)
else:
self.log(hook, 1)
return out
for h in pl_module_hooks:
attr = getattr(self, h)
setattr(self, h, partial(call, h, attr))
def test_fx_validator_integration(tmpdir):
"""Tries to log inside all `LightningModule` and `Callback` hooks to check any expected errors."""
not_supported = {
None: "`self.trainer` reference is not registered",
"on_before_accelerator_backend_setup": "You can't",
"setup": "You can't",
"configure_sharded_model": "You can't",
"on_configure_sharded_model": "You can't",
"configure_optimizers": "You can't",
"on_fit_start": "You can't",
"on_pretrain_routine_start": "You can't",
"on_pretrain_routine_end": "You can't",
"on_train_dataloader": "You can't",
"train_dataloader": "You can't",
"on_val_dataloader": "You can't",
"val_dataloader": "You can't",
"on_validation_end": "You can't",
"on_train_end": "You can't",
"on_fit_end": "You can't",
"teardown": "You can't",
"on_sanity_check_start": "You can't",
"on_sanity_check_end": "You can't",
"prepare_data": "You can't",
"configure_callbacks": "You can't",
"on_validation_model_eval": "You can't",
"summarize": "not managed by the `Trainer",
}
model = HookedModel(not_supported)
with pytest.raises(MisconfigurationException, match=not_supported[None]):
model.log("foo", 1)
callback = HookedCallback(not_supported)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=1,
limit_val_batches=1,
limit_test_batches=1,
limit_predict_batches=1,
callbacks=callback,
)
trainer.fit(model)
not_supported.update(
{
# `lightning_module` ref is now present from the `fit` call
"on_before_accelerator_backend_setup": "You can't",
"on_test_dataloader": "You can't",
"test_dataloader": "You can't",
"on_test_model_eval": "You can't",
"on_test_end": "You can't",
}
)
trainer.test(model, verbose=False)
not_supported.update({k: "ResultCollection` is not registered yet" for k in not_supported})
not_supported.update(
{
"on_predict_dataloader": "ResultCollection` is not registered yet",
"predict_dataloader": "ResultCollection` is not registered yet",
"on_predict_model_eval": "ResultCollection` is not registered yet",
"on_predict_start": "ResultCollection` is not registered yet",
"on_predict_epoch_start": "ResultCollection` is not registered yet",
"on_predict_batch_start": "ResultCollection` is not registered yet",
"predict_step": "ResultCollection` is not registered yet",
"on_predict_batch_end": "ResultCollection` is not registered yet",
"on_predict_epoch_end": "ResultCollection` is not registered yet",
"on_predict_end": "ResultCollection` is not registered yet",
}
)
trainer.predict(model)
@RunIf(min_gpus=2)
def test_epoch_results_cache_dp(tmpdir):
root_device = torch.device("cuda", 0)
class TestModel(BoringModel):
def training_step(self, *args, **kwargs):
result = super().training_step(*args, **kwargs)
self.log("train_loss_epoch", result["loss"], on_step=False, on_epoch=True)
return result
def training_step_end(self, training_step_outputs): # required for dp
loss = training_step_outputs["loss"].mean()
return loss
def training_epoch_end(self, outputs):
assert all(out["loss"].device == root_device for out in outputs)
assert self.trainer.callback_metrics["train_loss_epoch"].device == root_device
def validation_step(self, *args, **kwargs):
val_loss = torch.rand(1, device=torch.device("cuda", 1))
self.log("val_loss_epoch", val_loss, on_step=False, on_epoch=True)
return val_loss
def validation_epoch_end(self, outputs):
assert all(loss.device == root_device for loss in outputs)
assert self.trainer.callback_metrics["val_loss_epoch"].device == root_device
def test_step(self, *args, **kwargs):
test_loss = torch.rand(1, device=torch.device("cuda", 1))
self.log("test_loss_epoch", test_loss, on_step=False, on_epoch=True)
return test_loss
def test_epoch_end(self, outputs):
assert all(loss.device == root_device for loss in outputs)
assert self.trainer.callback_metrics["test_loss_epoch"].device == root_device
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=4)
def val_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=4)
def test_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=4)
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir, accelerator="dp", gpus=2, limit_train_batches=2, limit_val_batches=2, max_epochs=1
)
trainer.fit(model)
trainer.test(model)
def test_can_return_tensor_with_more_than_one_element(tmpdir):
"""Ensure {validation,test}_step return values are not included as callback metrics.
#6623
"""
class TestModel(BoringModel):
def validation_step(self, batch, *args, **kwargs):
return {"val": torch.tensor([0, 1])}
def validation_epoch_end(self, outputs):
# ensure validation step returns still appear here
assert len(outputs) == 2
assert all(list(d) == ["val"] for d in outputs) # check keys
assert all(torch.equal(d["val"], torch.tensor([0, 1])) for d in outputs) # check values
def test_step(self, batch, *args, **kwargs):
return {"test": torch.tensor([0, 1])}
def test_epoch_end(self, outputs):
assert len(outputs) == 2
assert all(list(d) == ["test"] for d in outputs) # check keys
assert all(torch.equal(d["test"], torch.tensor([0, 1])) for d in outputs) # check values
model = TestModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=2, progress_bar_refresh_rate=0)
trainer.fit(model)
trainer.validate(model)
trainer.test(model)
def test_logging_to_progress_bar_with_reserved_key(tmpdir):
"""Test that logging a metric with a reserved name to the progress bar raises a warning."""
class TestModel(BoringModel):
def training_step(self, *args, **kwargs):
output = super().training_step(*args, **kwargs)
self.log("loss", output["loss"], prog_bar=True)
return output
model = TestModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
with pytest.warns(UserWarning, match="The progress bar already tracks a metric with the .* 'loss'"):
trainer.fit(model)
@pytest.mark.parametrize("add_dataloader_idx", [False, True])
def test_auto_add_dataloader_idx(tmpdir, add_dataloader_idx):
"""test that auto_add_dataloader_idx argument works."""
class TestModel(BoringModel):
def val_dataloader(self):
dl = super().val_dataloader()
return [dl, dl]
def validation_step(self, *args, **kwargs):
output = super().validation_step(*args[:-1], **kwargs)
if add_dataloader_idx:
name = "val_loss"
else:
name = f"val_loss_custom_naming_{args[-1]}"
self.log(name, output["x"], add_dataloader_idx=add_dataloader_idx)
return output
model = TestModel()
model.validation_epoch_end = None
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=2)
trainer.fit(model)
logged = trainer.logged_metrics
# Check that the correct keys exist
if add_dataloader_idx:
assert "val_loss/dataloader_idx_0" in logged
assert "val_loss/dataloader_idx_1" in logged
else:
assert "val_loss_custom_naming_0" in logged
assert "val_loss_custom_naming_1" in logged
def test_metrics_reset(tmpdir):
"""Tests that metrics are reset correctly after the end of the train/val/test epoch."""
class TestModel(LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 1)
def _create_metrics(self):
acc = Accuracy()
acc.reset = mock.Mock(side_effect=acc.reset)
ap = AveragePrecision(num_classes=1, pos_label=1)
ap.reset = mock.Mock(side_effect=ap.reset)
return acc, ap
def setup(self, stage):
fn = stage
if fn == "fit":
for stage in ("train", "validate"):
acc, ap = self._create_metrics()
self.add_module(f"acc_{fn}_{stage}", acc)
self.add_module(f"ap_{fn}_{stage}", ap)
else:
acc, ap = self._create_metrics()
stage = self.trainer.state.stage
self.add_module(f"acc_{fn}_{stage}", acc)
self.add_module(f"ap_{fn}_{stage}", ap)
def forward(self, x):
return self.layer(x)
def _step(self, batch):
fn, stage = self.trainer.state.fn, self.trainer.state.stage
logits = self(batch)
loss = logits.sum()
self.log(f"loss/{fn}_{stage}", loss)
acc = self._modules[f"acc_{fn}_{stage}"]
ap = self._modules[f"ap_{fn}_{stage}"]
preds = torch.rand(len(batch)) # Fake preds
labels = torch.randint(0, 1, [len(batch)]) # Fake targets
acc(preds, labels)
ap(preds, labels)
# Metric.forward calls reset so reset the mocks here
acc.reset.reset_mock()
ap.reset.reset_mock()
self.log(f"acc/{fn}_{stage}", acc)
self.log(f"ap/{fn}_{stage}", ap)
return loss
def training_step(self, batch, batch_idx, *args, **kwargs):
return self._step(batch)
def validation_step(self, batch, batch_idx, *args, **kwargs):
if self.trainer.sanity_checking:
return
return self._step(batch)
def test_step(self, batch, batch_idx, *args, **kwargs):
return self._step(batch)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
return [optimizer], [lr_scheduler]
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64))
def val_dataloader(self):
return DataLoader(RandomDataset(32, 64))
def test_dataloader(self):
return DataLoader(RandomDataset(32, 64))
def _assert_called(model, fn, stage):
acc = model._modules[f"acc_{fn}_{stage}"]
ap = model._modules[f"ap_{fn}_{stage}"]
acc.reset.assert_called_once()
ap.reset.assert_called_once()
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
limit_test_batches=2,
max_epochs=1,
progress_bar_refresh_rate=0,
num_sanity_val_steps=2,
checkpoint_callback=False,
)
trainer.fit(model)
_assert_called(model, "fit", "train")
_assert_called(model, "fit", "validate")
trainer.validate(model)
_assert_called(model, "validate", "validate")
trainer.test(model)
_assert_called(model, "test", "test")
def test_result_collection_on_tensor_with_mean_reduction():
result_collection = ResultCollection(True, torch.device("cpu"))
product = [(True, True), (False, True), (True, False), (False, False)]
values = torch.arange(1, 10).float() # need to convert to float() due to precision issues using torch 1.4
batches = values * values
for i, v in enumerate(values):
for prog_bar in [False, True]:
for logger in [False, True]:
for on_step, on_epoch in product:
name = "loss"
if on_step:
name += "_on_step"
if on_epoch:
name += "_on_epoch"
if prog_bar:
name += "_prog_bar"
if logger:
name += "_logger"
result_collection.log(
"training_step",
name,
v,
on_step=on_step,
on_epoch=on_epoch,
batch_size=batches[i],
prog_bar=prog_bar,
logger=logger,
)
total_value = sum(values * batches)
total_batches = sum(batches)
assert result_collection["training_step.loss_on_step_on_epoch"].value == total_value
assert result_collection["training_step.loss_on_step_on_epoch"].cumulated_batch_size == total_batches
batch_metrics = result_collection.metrics(True)
max_ = max(values)
assert batch_metrics["pbar"] == {
"loss_on_step_on_epoch_prog_bar_step": max_,
"loss_on_step_on_epoch_prog_bar_logger_step": max_,
"loss_on_step_prog_bar": max_,
"loss_on_step_prog_bar_logger": max_,
}
assert batch_metrics["log"] == {
"loss_on_step_on_epoch_logger_step": max_,
"loss_on_step_logger": max_,
"loss_on_step_on_epoch_prog_bar_logger_step": max_,
"loss_on_step_prog_bar_logger": max_,
}
assert batch_metrics["callback"] == {
"loss_on_step": max_,
"loss_on_step_logger": max_,
"loss_on_step_on_epoch": max_,
"loss_on_step_on_epoch_logger": max_,
"loss_on_step_on_epoch_logger_step": max_,
"loss_on_step_on_epoch_prog_bar": max_,
"loss_on_step_on_epoch_prog_bar_logger": max_,
"loss_on_step_on_epoch_prog_bar_logger_step": max_,
"loss_on_step_on_epoch_prog_bar_step": max_,
"loss_on_step_on_epoch_step": max_,
"loss_on_step_prog_bar": max_,
"loss_on_step_prog_bar_logger": max_,
}
epoch_metrics = result_collection.metrics(False)
mean = total_value / total_batches
assert epoch_metrics["pbar"] == {
"loss_on_epoch_prog_bar": mean,
"loss_on_epoch_prog_bar_logger": mean,
"loss_on_step_on_epoch_prog_bar_epoch": mean,
"loss_on_step_on_epoch_prog_bar_logger_epoch": mean,
}
assert epoch_metrics["log"] == {
"loss_on_epoch_logger": mean,
"loss_on_epoch_prog_bar_logger": mean,
"loss_on_step_on_epoch_logger_epoch": mean,
"loss_on_step_on_epoch_prog_bar_logger_epoch": mean,
}
assert epoch_metrics["callback"] == {
"loss_on_epoch": mean,
"loss_on_epoch_logger": mean,
"loss_on_epoch_prog_bar": mean,
"loss_on_epoch_prog_bar_logger": mean,
"loss_on_step_on_epoch": mean,
"loss_on_step_on_epoch_epoch": mean,
"loss_on_step_on_epoch_logger": mean,
"loss_on_step_on_epoch_logger_epoch": mean,
"loss_on_step_on_epoch_prog_bar": mean,
"loss_on_step_on_epoch_prog_bar_epoch": mean,
"loss_on_step_on_epoch_prog_bar_logger": mean,
"loss_on_step_on_epoch_prog_bar_logger_epoch": mean,
}
def test_logged_metrics_has_logged_epoch_value(tmpdir):
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
self.log("epoch", -batch_idx, logger=True)
return super().training_step(batch, batch_idx)
model = TestModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=2)
trainer.fit(model)
# should not get overridden if logged manually
assert trainer.logged_metrics == {"epoch": -1}