lightning/tests/checkpointing/test_checkpoint_callback_fr...

134 lines
4.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
import pytest
import torch
from pytorch_lightning import callbacks, Trainer
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
def test_checkpoint_callback_disabled(tmpdir):
# no callback
trainer = Trainer(max_epochs=3, checkpoint_callback=False)
assert not trainer.checkpoint_callbacks
trainer.fit(BoringModel())
assert not trainer.checkpoint_callbacks
@mock.patch("torch.save")
@pytest.mark.parametrize(
["epochs", "val_check_interval", "expected"], [(1, 1.0, 1), (2, 1.0, 2), (1, 0.25, 4), (2, 0.3, 6)]
)
def test_default_checkpoint_freq(save_mock, tmpdir, epochs: int, val_check_interval: float, expected: int):
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=epochs,
weights_summary=None,
val_check_interval=val_check_interval,
limit_val_batches=1,
progress_bar_refresh_rate=0,
)
trainer.fit(model)
# make sure types are correct
assert save_mock.call_count == expected
@mock.patch("torch.save")
@pytest.mark.parametrize(
["k", "epochs", "val_check_interval", "expected"], [(1, 1, 1.0, 1), (2, 2, 1.0, 2), (2, 1, 0.25, 4), (2, 2, 0.3, 6)]
)
@pytest.mark.parametrize("save_last", (False, True))
def test_top_k(save_mock, tmpdir, k: int, epochs: int, val_check_interval: float, expected: int, save_last: bool):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.last_coeff = 10.0
def training_step(self, batch, batch_idx):
loss = self.step(torch.ones(32))
loss = loss / (loss + 0.0000001)
loss += self.last_coeff
self.log("my_loss", loss)
self.last_coeff *= 0.999
return loss
model = TestModel()
trainer = Trainer(
callbacks=[callbacks.ModelCheckpoint(dirpath=tmpdir, monitor="my_loss", save_top_k=k, save_last=save_last)],
default_root_dir=tmpdir,
max_epochs=epochs,
weights_summary=None,
val_check_interval=val_check_interval,
)
trainer.fit(model)
if save_last:
# last epochs are saved every step (so double the save calls) and once `on_train_end`
expected = expected * 2 + 1
assert save_mock.call_count == expected
@mock.patch("torch.save")
@RunIf(special=True, min_gpus=2)
def test_top_k_ddp_0(save_mock, tmpdir):
_top_k_ddp(save_mock, tmpdir, k=1, epochs=1, val_check_interval=1.0, expected=1)
@mock.patch("torch.save")
@RunIf(special=True, min_gpus=2)
def test_top_k_ddp_1(save_mock, tmpdir):
_top_k_ddp(save_mock, tmpdir, k=2, epochs=2, val_check_interval=0.3, expected=4)
def _top_k_ddp(save_mock, tmpdir, k, epochs, val_check_interval, expected):
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
local_rank = int(os.getenv("LOCAL_RANK"))
self.log("my_loss", batch_idx * (1 + local_rank), on_epoch=True)
return super().training_step(batch, batch_idx)
def training_epoch_end(self, outputs) -> None:
local_rank = int(os.getenv("LOCAL_RANK"))
if self.trainer.is_global_zero:
self.log("my_loss_2", (1 + local_rank), on_epoch=True, rank_zero_only=True)
data = str(self.global_rank)
obj = [[data], (data,), set(data)]
out = self.trainer.training_type_plugin.broadcast(obj)
assert obj == [[str(self.global_rank)], (str(self.global_rank),), set(str(self.global_rank))]
assert out == [["0"], ("0",), set("0")]
model = TestModel()
trainer = Trainer(
callbacks=[callbacks.ModelCheckpoint(dirpath=tmpdir, monitor="my_loss_step", save_top_k=k, mode="max")],
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=epochs,
weights_summary=None,
val_check_interval=val_check_interval,
accelerator="ddp",
gpus=2,
limit_train_batches=64,
limit_val_batches=32,
)
trainer.fit(model)
if os.getenv("LOCAL_RANK") == "0":
assert save_mock.call_count == expected