171 lines
6.0 KiB
Python
171 lines
6.0 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from pathlib import Path
|
|
from re import escape
|
|
from unittest.mock import call, Mock
|
|
|
|
import pytest
|
|
|
|
from pytorch_lightning import Callback, Trainer
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.utils import no_warning_call
|
|
|
|
|
|
def test_callbacks_configured_in_model(tmpdir):
|
|
"""Test the callback system with callbacks added through the model hook."""
|
|
|
|
model_callback_mock = Mock(spec=Callback, model=Callback())
|
|
trainer_callback_mock = Mock(spec=Callback, model=Callback())
|
|
|
|
class TestModel(BoringModel):
|
|
def configure_callbacks(self):
|
|
return [model_callback_mock]
|
|
|
|
model = TestModel()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir, checkpoint_callback=False, fast_dev_run=True, progress_bar_refresh_rate=0
|
|
)
|
|
|
|
def assert_expected_calls(_trainer, model_callback, trainer_callback):
|
|
# some methods in callbacks configured through model won't get called
|
|
uncalled_methods = [call.on_init_start(_trainer), call.on_init_end(_trainer)]
|
|
for uncalled in uncalled_methods:
|
|
assert uncalled not in model_callback.method_calls
|
|
|
|
# assert that the rest of calls are the same as for trainer callbacks
|
|
expected_calls = [m for m in trainer_callback.method_calls if m not in uncalled_methods]
|
|
assert expected_calls
|
|
assert model_callback.method_calls == expected_calls
|
|
|
|
# .fit()
|
|
trainer_options.update(callbacks=[trainer_callback_mock])
|
|
trainer = Trainer(**trainer_options)
|
|
|
|
assert trainer_callback_mock in trainer.callbacks
|
|
assert model_callback_mock not in trainer.callbacks
|
|
trainer.fit(model)
|
|
|
|
assert model_callback_mock in trainer.callbacks
|
|
assert trainer.callbacks[-1] == model_callback_mock
|
|
assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock)
|
|
|
|
# .test()
|
|
for fn in ("test", "validate"):
|
|
model_callback_mock.reset_mock()
|
|
trainer_callback_mock.reset_mock()
|
|
|
|
trainer_options.update(callbacks=[trainer_callback_mock])
|
|
trainer = Trainer(**trainer_options)
|
|
|
|
trainer_fn = getattr(trainer, fn)
|
|
trainer_fn(model)
|
|
|
|
assert model_callback_mock in trainer.callbacks
|
|
assert trainer.callbacks[-1] == model_callback_mock
|
|
assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock)
|
|
|
|
|
|
def test_configure_callbacks_hook_multiple_calls(tmpdir):
|
|
"""Test that subsequent calls to `configure_callbacks` do not change the callbacks list."""
|
|
model_callback_mock = Mock(spec=Callback, model=Callback())
|
|
|
|
class TestModel(BoringModel):
|
|
def configure_callbacks(self):
|
|
return [model_callback_mock]
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, fast_dev_run=True, checkpoint_callback=False, progress_bar_refresh_rate=1
|
|
)
|
|
|
|
callbacks_before_fit = trainer.callbacks.copy()
|
|
assert callbacks_before_fit
|
|
|
|
trainer.fit(model)
|
|
callbacks_after_fit = trainer.callbacks.copy()
|
|
assert callbacks_after_fit == callbacks_before_fit + [model_callback_mock]
|
|
|
|
for fn in ("test", "validate"):
|
|
trainer_fn = getattr(trainer, fn)
|
|
trainer_fn(model)
|
|
|
|
callbacks_after = trainer.callbacks.copy()
|
|
assert callbacks_after == callbacks_after_fit
|
|
|
|
trainer_fn(model)
|
|
callbacks_after = trainer.callbacks.copy()
|
|
assert callbacks_after == callbacks_after_fit
|
|
|
|
|
|
class OldStatefulCallback(Callback):
|
|
def __init__(self, state):
|
|
self.state = state
|
|
|
|
@property
|
|
def state_key(self):
|
|
return type(self)
|
|
|
|
def on_save_checkpoint(self, *args):
|
|
return {"state": self.state}
|
|
|
|
def on_load_checkpoint(self, trainer, pl_module, callback_state):
|
|
self.state = callback_state["state"]
|
|
|
|
|
|
def test_resume_callback_state_saved_by_type(tmpdir):
|
|
"""Test that a legacy checkpoint that didn't use a state key before can still be loaded."""
|
|
model = BoringModel()
|
|
callback = OldStatefulCallback(state=111)
|
|
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, callbacks=[callback])
|
|
trainer.fit(model)
|
|
ckpt_path = Path(trainer.checkpoint_callback.best_model_path)
|
|
assert ckpt_path.exists()
|
|
|
|
callback = OldStatefulCallback(state=222)
|
|
trainer = Trainer(default_root_dir=tmpdir, max_steps=2, callbacks=[callback], resume_from_checkpoint=ckpt_path)
|
|
trainer.fit(model)
|
|
assert callback.state == 111
|
|
|
|
|
|
def test_resume_incomplete_callbacks_list_warning(tmpdir):
|
|
model = BoringModel()
|
|
callback0 = ModelCheckpoint(monitor="epoch")
|
|
callback1 = ModelCheckpoint(monitor="global_step")
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_steps=1,
|
|
callbacks=[callback0, callback1],
|
|
)
|
|
trainer.fit(model)
|
|
ckpt_path = trainer.checkpoint_callback.best_model_path
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_steps=1,
|
|
callbacks=[callback1], # one callback is missing!
|
|
resume_from_checkpoint=ckpt_path,
|
|
)
|
|
with pytest.warns(UserWarning, match=escape(f"Please add the following callbacks: [{repr(callback0.state_key)}]")):
|
|
trainer.fit(model)
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_steps=1,
|
|
callbacks=[callback1, callback0], # all callbacks here, order switched
|
|
resume_from_checkpoint=ckpt_path,
|
|
)
|
|
with no_warning_call(UserWarning, match="Please add the following callbacks:"):
|
|
trainer.fit(model)
|