190 lines
7.4 KiB
Python
190 lines
7.4 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
from typing import List
|
|
from unittest.mock import Mock
|
|
|
|
import lightning.fabric
|
|
import pytest
|
|
import torch.distributed
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def preserve_global_rank_variable():
|
|
"""Ensures that the rank_zero_only.rank global variable gets reset in each test."""
|
|
from lightning.fabric.utilities.rank_zero import rank_zero_only
|
|
|
|
rank = getattr(rank_zero_only, "rank", None)
|
|
yield
|
|
if rank is not None:
|
|
setattr(rank_zero_only, "rank", rank)
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def restore_env_variables():
|
|
"""Ensures that environment variables set during the test do not leak out."""
|
|
env_backup = os.environ.copy()
|
|
yield
|
|
leaked_vars = os.environ.keys() - env_backup.keys()
|
|
# restore environment as it was before running the test
|
|
os.environ.clear()
|
|
os.environ.update(env_backup)
|
|
# these are currently known leakers - ideally these would not be allowed
|
|
# TODO(fabric): this list can be trimmed, maybe PL's too after moving tests
|
|
allowlist = {
|
|
"CUDA_DEVICE_ORDER",
|
|
"LOCAL_RANK",
|
|
"NODE_RANK",
|
|
"WORLD_SIZE",
|
|
"MASTER_ADDR",
|
|
"MASTER_PORT",
|
|
"PL_GLOBAL_SEED",
|
|
"PL_SEED_WORKERS",
|
|
"RANK", # set by DeepSpeed
|
|
"POPLAR_ENGINE_OPTIONS", # set by IPUStrategy
|
|
"CUDA_MODULE_LOADING", # leaked since PyTorch 1.13
|
|
"CRC32C_SW_MODE", # set by tensorboardX
|
|
"OMP_NUM_THREADS", # set by our launchers
|
|
# set by XLA FSDP on XRT
|
|
"XRT_TORCH_DIST_ROOT",
|
|
"XRT_MESH_SERVICE_ADDRESS",
|
|
# set by torchdynamo
|
|
"TRITON_CACHE_DIR",
|
|
}
|
|
leaked_vars.difference_update(allowlist)
|
|
assert not leaked_vars, f"test is leaking environment variable(s): {set(leaked_vars)}"
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def teardown_process_group():
|
|
"""Ensures that the distributed process group gets closed before the next test runs."""
|
|
yield
|
|
if torch.distributed.is_available() and torch.distributed.is_initialized():
|
|
torch.distributed.destroy_process_group()
|
|
|
|
|
|
@pytest.fixture()
|
|
def reset_deterministic_algorithm():
|
|
"""Ensures that torch determinism settings are reset before the next test runs."""
|
|
yield
|
|
os.environ.pop("CUBLAS_WORKSPACE_CONFIG", None)
|
|
torch.use_deterministic_algorithms(False)
|
|
|
|
|
|
@pytest.fixture()
|
|
def reset_cudnn_benchmark():
|
|
"""Ensures that the `torch.backends.cudnn.benchmark` setting gets reset before the next test runs."""
|
|
yield
|
|
torch.backends.cudnn.benchmark = False
|
|
|
|
|
|
def mock_xla_available(monkeypatch: pytest.MonkeyPatch, value: bool = True) -> None:
|
|
monkeypatch.setattr(lightning.fabric.accelerators.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.fabric.plugins.environments.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.fabric.plugins.precision.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.fabric.plugins.io.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.fabric.strategies.single_xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.fabric.strategies.launchers.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setitem(sys.modules, "torch_xla", Mock())
|
|
monkeypatch.setitem(sys.modules, "torch_xla.core.xla_model", Mock())
|
|
monkeypatch.setitem(sys.modules, "torch_xla.experimental", Mock())
|
|
monkeypatch.setitem(sys.modules, "torch_xla.distributed.fsdp.wrap", Mock())
|
|
|
|
|
|
@pytest.fixture()
|
|
def xla_available(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
mock_xla_available(monkeypatch)
|
|
|
|
|
|
def mock_tpu_available(monkeypatch: pytest.MonkeyPatch, value: bool = True) -> None:
|
|
mock_xla_available(monkeypatch, value)
|
|
monkeypatch.setattr(lightning.fabric.accelerators.xla.XLAAccelerator, "is_available", lambda: value)
|
|
monkeypatch.setattr(lightning.fabric.accelerators.xla.XLAAccelerator, "auto_device_count", lambda *_: 8)
|
|
|
|
|
|
@pytest.fixture()
|
|
def tpu_available(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
mock_tpu_available(monkeypatch)
|
|
|
|
|
|
@pytest.fixture()
|
|
def caplog(caplog):
|
|
"""Workaround for https://github.com/pytest-dev/pytest/issues/3697.
|
|
|
|
Setting ``filterwarnings`` with pytest breaks ``caplog`` when ``not logger.propagate``.
|
|
|
|
"""
|
|
import logging
|
|
|
|
lightning_logger = logging.getLogger("lightning.fabric")
|
|
propagate = lightning_logger.propagate
|
|
lightning_logger.propagate = True
|
|
yield caplog
|
|
lightning_logger.propagate = propagate
|
|
|
|
|
|
def pytest_collection_modifyitems(items: List[pytest.Function], config: pytest.Config) -> None:
|
|
"""An adaptation of `tests/tests_pytorch/conftest.py::pytest_collection_modifyitems`"""
|
|
initial_size = len(items)
|
|
conditions = []
|
|
filtered, skipped = 0, 0
|
|
|
|
options = {
|
|
"standalone": "PL_RUN_STANDALONE_TESTS",
|
|
"min_cuda_gpus": "PL_RUN_CUDA_TESTS",
|
|
"tpu": "PL_RUN_TPU_TESTS",
|
|
}
|
|
if os.getenv(options["standalone"], "0") == "1" and os.getenv(options["min_cuda_gpus"], "0") == "1":
|
|
# special case: we don't have a CPU job for standalone tests, so we shouldn't run only cuda tests.
|
|
# by deleting the key, we avoid filtering out the CPU tests
|
|
del options["min_cuda_gpus"]
|
|
|
|
for kwarg, env_var in options.items():
|
|
# this will compute the intersection of all tests selected per environment variable
|
|
if os.getenv(env_var, "0") == "1":
|
|
conditions.append(env_var)
|
|
for i, test in reversed(list(enumerate(items))): # loop in reverse, since we are going to pop items
|
|
already_skipped = any(marker.name == "skip" for marker in test.own_markers)
|
|
if already_skipped:
|
|
# the test was going to be skipped anyway, filter it out
|
|
items.pop(i)
|
|
skipped += 1
|
|
continue
|
|
has_runif_with_kwarg = any(
|
|
marker.name == "skipif" and marker.kwargs.get(kwarg) for marker in test.own_markers
|
|
)
|
|
if not has_runif_with_kwarg:
|
|
# the test has `@RunIf(kwarg=True)`, filter it out
|
|
items.pop(i)
|
|
filtered += 1
|
|
|
|
if config.option.verbose >= 0 and (filtered or skipped):
|
|
writer = config.get_terminal_writer()
|
|
writer.write(
|
|
f"\nThe number of tests has been filtered from {initial_size} to {initial_size - filtered} after the"
|
|
f" filters {conditions}.\n{skipped} tests are marked as unconditional skips.\nIn total, {len(items)} tests"
|
|
" will run.\n",
|
|
flush=True,
|
|
bold=True,
|
|
purple=True, # oh yeah, branded pytest messages
|
|
)
|
|
|
|
# error out on our deprecation warnings - ensures the code and tests are kept up-to-date
|
|
deprecation_error = pytest.mark.filterwarnings(
|
|
"error::lightning.fabric.utilities.rank_zero.LightningDeprecationWarning",
|
|
)
|
|
for item in items:
|
|
item.add_marker(deprecation_error)
|