lightning/docs/source-pytorch/debug/debugging_advanced.rst

45 lines
1.3 KiB
ReStructuredText

:orphan:
.. _debugging_advanced:
###########################
Debug your model (advanced)
###########################
**Audience**: Users who want to debug distributed models.
----
************************
Debug distributed models
************************
To debug a distributed model, we recommend you debug it locally by running the distributed version on CPUs:
.. code-block:: python
trainer = Trainer(accelerator="cpu", strategy="ddp", devices=2)
On the CPU, you can use `pdb <https://docs.python.org/3/library/pdb.html>`_ or `breakpoint() <https://docs.python.org/3/library/functions.html#breakpoint>`_
or use regular print statements.
.. testcode::
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
debugging_message = ...
print(f"RANK - {self.trainer.global_rank}: {debugging_message}")
if self.trainer.global_rank == 0:
import pdb
pdb.set_trace()
# to prevent other processes from moving forward until all processes are in sync
self.trainer.strategy.barrier()
When everything works, switch back to GPU by changing only the accelerator.
.. code-block:: python
trainer = Trainer(accelerator="gpu", strategy="ddp", devices=2)