lightning/tests/base/models.py

156 lines
4.9 KiB
Python

import os
from collections import OrderedDict
from typing import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from tests.base.datasets import TestingMNIST
try:
from test_tube import HyperOptArgumentParser
except ImportError:
# TODO: this should be discussed and moved out of this package
raise ImportError('Missing test-tube package.')
from pytorch_lightning.core.lightning import LightningModule
class DictHparamsModel(LightningModule):
def __init__(self, hparams: Dict):
super().__init__()
self.hparams = hparams
self.l1 = torch.nn.Linear(hparams.get('in_features'), hparams['out_features'])
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
return {'loss': F.cross_entropy(y_hat, y)}
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
def train_dataloader(self):
return DataLoader(TestingMNIST(train=True, download=True), batch_size=16)
class TestModelBase(LightningModule):
"""Base LightningModule for testing. Implements only the required interface."""
def __init__(self, hparams, force_remove_distributed_sampler: bool = False):
"""Pass in parsed HyperOptArgumentParser to the model."""
# init superclass
super().__init__()
self.hparams = hparams
self.batch_size = hparams.batch_size
# if you specify an example input, the summary will show input/output for each layer
self.example_input_array = torch.rand(5, 28 * 28)
# remove to test warning for dist sampler
self.force_remove_distributed_sampler = force_remove_distributed_sampler
# build model
self.__build_model()
# ---------------------
# MODEL SETUP
# ---------------------
def __build_model(self):
"""Layout model."""
self.c_d1 = nn.Linear(in_features=self.hparams.in_features,
out_features=self.hparams.hidden_dim)
self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim)
self.c_d1_drop = nn.Dropout(self.hparams.drop_prob)
self.c_d2 = nn.Linear(in_features=self.hparams.hidden_dim,
out_features=self.hparams.out_features)
# ---------------------
# TRAINING
# ---------------------
def forward(self, x):
"""No special modification required for lightning, define as you normally would."""
x = self.c_d1(x)
x = torch.tanh(x)
x = self.c_d1_bn(x)
x = self.c_d1_drop(x)
x = self.c_d2(x)
logits = F.log_softmax(x, dim=1)
return logits
def loss(self, labels, logits):
nll = F.nll_loss(logits, labels)
return nll
def training_step(self, batch, batch_idx, optimizer_idx=None):
"""Lightning calls this inside the training loop"""
# forward pass
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x)
# calculate loss
loss_val = self.loss(y, y_hat)
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
if self.trainer.use_dp:
loss_val = loss_val.unsqueeze(0)
# alternate possible outputs to test
if self.trainer.batch_idx % 1 == 0:
output = OrderedDict({
'loss': loss_val,
'progress_bar': {'some_val': loss_val * loss_val},
'log': {'train_some_val': loss_val * loss_val},
})
return output
if self.trainer.batch_idx % 2 == 0:
return loss_val
# ---------------------
# TRAINING SETUP
# ---------------------
def configure_optimizers(self):
"""
return whatever optimizers we want here.
:return: list of optimizers
"""
# try no scheduler for this model (testing purposes)
if self.hparams.optimizer_name == 'lbfgs':
optimizer = optim.LBFGS(self.parameters(), lr=self.hparams.learning_rate)
else:
optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
return [optimizer], [scheduler]
def prepare_data(self):
_ = TestingMNIST(root=self.hparams.data_root, train=True, download=True)
def _dataloader(self, train):
# init data generators
dataset = TestingMNIST(root=self.hparams.data_root, train=train, download=False)
# when using multi-node we need to add the datasampler
batch_size = self.hparams.batch_size
loader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=True
)
return loader