lightning/pytorch_lightning/trainer/callback_config.py

93 lines
3.3 KiB
Python

import os
from abc import ABC, abstractmethod
from typing import Union
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.loggers import LightningLoggerBase
class TrainerCallbackConfigMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
default_save_path: str
logger: Union[LightningLoggerBase, bool]
weights_save_path: str
ckpt_path: str
checkpoint_callback: ModelCheckpoint
@property
@abstractmethod
def slurm_job_id(self) -> int:
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def save_checkpoint(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
def configure_checkpoint_callback(self):
"""
Weight path set in this priority:
Checkpoint_callback's path (if passed in).
User provided weights_saved_path
Otherwise use os.getcwd()
"""
ckpt_path = self.default_save_path
if self.checkpoint_callback is True:
# init a default one
if self.logger is not None:
save_dir = (getattr(self.logger, 'save_dir', None) or
getattr(self.logger, '_save_dir', None) or
self.default_save_path)
ckpt_path = os.path.join(
save_dir,
self.logger.name,
f'version_{self.logger.version}',
"checkpoints"
)
else:
ckpt_path = os.path.join(self.default_save_path, "checkpoints")
# when no val step is defined, use 'loss' otherwise 'val_loss'
train_step_only = not self.is_overriden('validation_step')
monitor_key = 'loss' if train_step_only else 'val_loss'
self.ckpt_path = ckpt_path
os.makedirs(ckpt_path, exist_ok=True)
self.checkpoint_callback = ModelCheckpoint(
filepath=ckpt_path,
monitor=monitor_key
)
elif self.checkpoint_callback is False:
self.checkpoint_callback = None
self.ckpt_path = ckpt_path
if self.checkpoint_callback:
# set the path for the callbacks
self.checkpoint_callback.save_function = self.save_checkpoint
# if checkpoint callback used, then override the weights path
self.weights_save_path = self.checkpoint_callback.dirpath
# if weights_save_path is still none here, set to current working dir
if self.weights_save_path is None:
self.weights_save_path = self.default_save_path
def configure_early_stopping(self, early_stop_callback):
if early_stop_callback is True or None:
self.early_stop_callback = EarlyStopping(
monitor='val_loss',
patience=3,
strict=True,
verbose=True,
mode='min'
)
self.enable_early_stop = True
elif not early_stop_callback:
self.early_stop_callback = None
self.enable_early_stop = False
else:
self.early_stop_callback = early_stop_callback
self.enable_early_stop = True