lightning/pytorch_lightning/loggers/neptune.py

344 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Log using `neptune-logger <https://neptune.ai>`_
.. _neptune:
NeptuneLogger
--------------
"""
from argparse import Namespace
from typing import Optional, List, Dict, Any, Union, Iterable
try:
import neptune
from neptune.experiments import Experiment
except ImportError: # pragma: no-cover
raise ImportError('You want to use `neptune` logger which is not installed yet,' # pragma: no-cover
' install it with `pip install neptune-client`.')
import torch
from torch import is_tensor
from pytorch_lightning import _logger as log
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_only
class NeptuneLogger(LightningLoggerBase):
r"""
Neptune logger can be used in the online mode or offline (silent) mode.
To log experiment data in online mode, NeptuneLogger requries an API key:
"""
def __init__(self, api_key: Optional[str] = None, project_name: Optional[str] = None,
close_after_fit: Optional[bool] = True, offline_mode: bool = False,
experiment_name: Optional[str] = None,
upload_source_files: Optional[List[str]] = None, params: Optional[Dict[str, Any]] = None,
properties: Optional[Dict[str, Any]] = None, tags: Optional[List[str]] = None, **kwargs):
r"""
Initialize a neptune.ai logger.
.. note:: Requires either an API Key (online mode) or a local directory path (offline mode)
.. code-block:: python
# ONLINE MODE
from pytorch_lightning.loggers import NeptuneLogger
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
# We are using an api_key for the anonymous user "neptuner" but you can use your own.
neptune_logger = NeptuneLogger(
api_key="ANONYMOUS"
project_name="shared/pytorch-lightning-integration",
experiment_name="default", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-lightning","mlp"] # Optional,
)
trainer = Trainer(max_epochs=10, logger=neptune_logger)
.. code-block:: python
# OFFLINE MODE
from pytorch_lightning.loggers import NeptuneLogger
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
neptune_logger = NeptuneLogger(
project_name="USER_NAME/PROJECT_NAME",
experiment_name="default", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-lightning","mlp"] # Optional,
)
trainer = Trainer(max_epochs=10, logger=neptune_logger)
Use the logger anywhere in you LightningModule as follows:
.. code-block:: python
def train_step(...):
# example
self.logger.experiment.log_metric("acc_train", acc_train) # log metrics
self.logger.experiment.log_image("worse_predictions", prediction_image) # log images
self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint
self.logger.experiment.whatever_neptune_supports(...)
def any_lightning_module_function_or_hook(...):
self.logger.experiment.log_metric("acc_train", acc_train) # log metrics
self.logger.experiment.log_image("worse_predictions", prediction_image) # log images
self.logger.experiment.log_artifact("model_checkpoint.pt", prediction_image) # log model checkpoint
self.logger.experiment.whatever_neptune_supports(...)
If you want to log objects after the training is finished use close_after_train=False:
.. code-block:: python
neptune_logger = NeptuneLogger(
...
close_after_fit=False,
...)
trainer = Trainer(logger=neptune_logger)
trainer.fit()
# Log test metrics
trainer.test(model)
# Log additional metrics
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_true, y_pred)
neptune_logger.experiment.log_metric('test_accuracy', accuracy)
# Log charts
from scikitplot.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(16, 12))
plot_confusion_matrix(y_true, y_pred, ax=ax)
neptune_logger.experiment.log_image('confusion_matrix', fig)
# Save checkpoints folder
neptune_logger.experiment.log_artifact('my/checkpoints')
# When you are done, stop the experiment
neptune_logger.experiment.stop()
You can go and see an example experiment here:
https://ui.neptune.ai/o/shared/org/pytorch-lightning-integration/e/PYTOR-66/charts
Args:
api_key: Required in online mode.
Neputne API token, found on https://neptune.ai
Read how to get your API key
https://docs.neptune.ai/python-api/tutorials/get-started.html#copy-api-token.
It is recommended to keep it in the `NEPTUNE_API_TOKEN`
environment variable and then you can leave `api_key=None`
project_name: Required in online mode. Qualified name of a project in a form of
"namespace/project_name" for example "tom/minst-classification".
If None, the value of NEPTUNE_PROJECT environment variable will be taken.
You need to create the project in https://neptune.ai first.
offline_mode: Optional default False. If offline_mode=True no logs will be send
to neptune. Usually used for debug purposes.
close_after_fit: Optional default True. If close_after_fit=False the experiment
will not be closed after training and additional metrics,
images or artifacts can be logged. Also, remember to close the experiment explicitly
by running neptune_logger.experiment.stop().
experiment_name: Optional. Editable name of the experiment.
Name is displayed in the experiments Details (Metadata section) and
in experiments view as a column.
upload_source_files: Optional. List of source files to be uploaded.
Must be list of str or single str. Uploaded sources are displayed
in the experiments Source code tab.
If None is passed, Python file from which experiment was created will be uploaded.
Pass empty list ([]) to upload no files.
Unix style pathname pattern expansion is supported.
For example, you can pass '\*.py'
to upload all python source files from the current directory.
For recursion lookup use '\**/\*.py' (for Python 3.5 and later).
For more information see glob library.
params: Optional. Parameters of the experiment.
After experiment creation params are read-only.
Parameters are displayed in the experiments Parameters section and
each key-value pair can be viewed in experiments view as a column.
properties: Optional default is {}. Properties of the experiment.
They are editable after experiment is created.
Properties are displayed in the experiments Details and
each key-value pair can be viewed in experiments view as a column.
tags: Optional default []. Must be list of str. Tags of the experiment.
They are editable after experiment is created (see: append_tag() and remove_tag()).
Tags are displayed in the experiments Details and can be viewed
in experiments view as a column.
"""
super().__init__()
self.api_key = api_key
self.project_name = project_name
self.offline_mode = offline_mode
self.close_after_fit = close_after_fit
self.experiment_name = experiment_name
self.upload_source_files = upload_source_files
self.params = params
self.properties = properties
self.tags = tags
self._experiment = None
self._kwargs = kwargs
if offline_mode:
self.mode = 'offline'
neptune.init(project_qualified_name='dry-run/project',
backend=neptune.OfflineBackend())
else:
self.mode = 'online'
neptune.init(api_token=self.api_key,
project_qualified_name=self.project_name)
log.info(f'NeptuneLogger was initialized in {self.mode} mode')
def __getstate__(self):
state = self.__dict__.copy()
# cannot be pickled
state['_experiment'] = None
return state
@property
def experiment(self) -> Experiment:
r"""
Actual neptune object. To use neptune features do the following.
Example::
self.logger.experiment.some_neptune_function()
"""
if self._experiment is None:
self._experiment = neptune.create_experiment(
name=self.experiment_name,
params=self.params,
properties=self.properties,
tags=self.tags,
upload_source_files=self.upload_source_files,
**self._kwargs)
return self._experiment
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = self._convert_params(params)
params = self._flatten_dict(params)
for key, val in params.items():
self.experiment.set_property(f'param__{key}', val)
@rank_zero_only
def log_metrics(
self,
metrics: Dict[str, Union[torch.Tensor, float]],
step: Optional[int] = None
) -> None:
"""Log metrics (numeric values) in Neptune experiments
Args:
metrics: Dictionary with metric names as keys and measured quantities as values
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
for key, val in metrics.items():
self.log_metric(key, val, step=step)
@rank_zero_only
def finalize(self, status: str) -> None:
if self.close_after_fit:
self.experiment.stop()
@property
def name(self) -> str:
if self.mode == 'offline':
return 'offline-name'
else:
return self.experiment.name
@property
def version(self) -> str:
if self.mode == 'offline':
return 'offline-id-1234'
else:
return self.experiment.id
@rank_zero_only
def log_metric(
self,
metric_name: str,
metric_value: Union[torch.Tensor, float, str],
step: Optional[int] = None
) -> None:
"""Log metrics (numeric values) in Neptune experiments
Args:
metric_name: The name of log, i.e. mse, loss, accuracy.
metric_value: The value of the log (data-point).
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if is_tensor(metric_value):
metric_value = metric_value.cpu().detach()
if step is None:
self.experiment.log_metric(metric_name, metric_value)
else:
self.experiment.log_metric(metric_name, x=step, y=metric_value)
@rank_zero_only
def log_text(self, log_name: str, text: str, step: Optional[int] = None) -> None:
"""Log text data in Neptune experiment
Args:
log_name: The name of log, i.e. mse, my_text_data, timing_info.
text: The value of the log (data-point).
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
self.log_metric(log_name, text, step=step)
@rank_zero_only
def log_image(self, log_name: str, image: Union[str, Any], step: Optional[int] = None) -> None:
"""Log image data in Neptune experiment
Args:
log_name: The name of log, i.e. bboxes, visualisations, sample_images.
image (str|PIL.Image|matplotlib.figure.Figure): The value of the log (data-point).
Can be one of the following types: PIL image, matplotlib.figure.Figure, path to image file (str)
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if step is None:
self.experiment.log_image(log_name, image)
else:
self.experiment.log_image(log_name, x=step, y=image)
@rank_zero_only
def log_artifact(self, artifact: str, destination: Optional[str] = None) -> None:
"""Save an artifact (file) in Neptune experiment storage.
Args:
artifact: A path to the file in local filesystem.
destination: Optional default None. A destination path.
If None is passed, an artifact file name will be used.
"""
self.experiment.log_artifact(artifact, destination)
@rank_zero_only
def set_property(self, key: str, value: Any) -> None:
"""Set key-value pair as Neptune experiment property.
Args:
key: Property key.
value: New value of a property.
"""
self.experiment.set_property(key, value)
@rank_zero_only
def append_tags(self, tags: Union[str, Iterable[str]]) -> None:
"""appends tags to neptune experiment
Args:
tags: Tags to add to the current experiment. If str is passed, singe tag is added.
If multiple - comma separated - str are passed, all of them are added as tags.
If list of str is passed, all elements of the list are added as tags.
"""
if str(tags) == tags:
tags = [tags] # make it as an iterable is if it is not yet
self.experiment.append_tags(*tags)