lightning/pytorch_lightning/loggers/base.py

351 lines
12 KiB
Python

import argparse
import functools
import operator
from abc import ABC, abstractmethod
from argparse import Namespace
from functools import wraps
from typing import Union, Optional, Dict, Iterable, Any, Callable, List, Sequence, Mapping, Tuple
import numpy as np
import torch
def rank_zero_only(fn: Callable):
"""Decorate a logger method to run it only on the process with rank 0.
Args:
fn: Function to decorate
"""
@wraps(fn)
def wrapped_fn(self, *args, **kwargs):
if self.rank == 0:
fn(self, *args, **kwargs)
return wrapped_fn
class LightningLoggerBase(ABC):
"""Base class for experiment loggers."""
def __init__(
self,
agg_key_funcs: Optional[Mapping[str, Callable[[Sequence[float]], float]]] = None,
agg_default_func: Callable[[Sequence[float]], float] = np.mean
):
"""
Args:
agg_key_funcs:
Dictionary which maps a metric name to a function, which will
aggregate the metric values for the same steps.
agg_default_func:
Default function to aggregate metric values. If some metric name
is not presented in the `agg_key_funcs` dictionary, then the
`agg_default_func` will be used for aggregation.
Notes:
`agg_key_funcs` and `agg_default_func` are used only when one logs metrics with
`LightningLoggerBase.agg_and_log_metrics` method.
"""
self._rank = 0
self._prev_step = -1
self._metrics_to_agg: List[Dict[str, float]] = []
self._agg_key_funcs = agg_key_funcs if agg_key_funcs else {}
self._agg_default_func = agg_default_func
def update_agg_funcs(
self,
agg_key_funcs: Optional[Mapping[str, Callable[[Sequence[float]], float]]] = None,
agg_default_func: Callable[[Sequence[float]], float] = np.mean
):
"""Update aggregation methods.
Args:
agg_key_funcs:
Dictionary which maps a metric name to a function, which will
aggregate the metric values for the same steps.
agg_default_func:
Default function to aggregate metric values. If some metric name
is not presented in the `agg_key_funcs` dictionary, then the
`agg_default_func` will be used for aggregation.
"""
if agg_key_funcs:
self._agg_key_funcs.update(agg_key_funcs)
if agg_default_func:
self._agg_default_func = agg_default_func
@property
@abstractmethod
def experiment(self) -> Any:
"""Return the experiment object associated with this logger"""
def _aggregate_metrics(
self, metrics: Dict[str, float], step: Optional[int] = None
) -> Tuple[int, Optional[Dict[str, float]]]:
"""Aggregates metrics.
Args:
metrics: Dictionary with metric names as keys and measured quantities as values
step: Step number at which the metrics should be recorded
Returns:
sStep and aggregated metrics. The return value could be None. In such case, metrics
are added to the aggregation list, but not aggregated yet.
"""
# if you still receiving metric from the same step, just accumulate it
if step == self._prev_step:
self._metrics_to_agg.append(metrics)
return step, None
# compute the metrics
agg_step, agg_mets = self._finalize_agg_metrics()
# as new step received reset accumulator
self._metrics_to_agg = [metrics]
self._prev_step = step
return agg_step, agg_mets
def _finalize_agg_metrics(self):
"""Aggregate accumulated metrics. This shall be called in close."""
# compute the metrics
if not self._metrics_to_agg:
agg_mets = None
elif len(self._metrics_to_agg) == 1:
agg_mets = self._metrics_to_agg[0]
else:
agg_mets = merge_dicts(self._metrics_to_agg, self._agg_key_funcs, self._agg_default_func)
return self._prev_step, agg_mets
def agg_and_log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
"""Aggregates and records metrics.
This method doesn't log the passed metrics instantaneously, but instead
it aggregates them and logs only if metrics are ready to be logged.
Args:
metrics: Dictionary with metric names as keys and measured quantities as values
step: Step number at which the metrics should be recorded
"""
agg_step, metrics_to_log = self._aggregate_metrics(metrics=metrics, step=step)
if metrics_to_log is not None:
self.log_metrics(metrics=metrics_to_log, step=agg_step)
@abstractmethod
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
"""Records metrics.
This method logs metrics as as soon as it received them. If you want to aggregate
metrics for one specific `step`, use the `agg_and_log_metrics` method.
Args:
metrics: Dictionary with metric names as keys and measured quantities as values
step: Step number at which the metrics should be recorded
"""
pass
@staticmethod
def _convert_params(params: Union[Dict[str, Any], Namespace]) -> Dict[str, Any]:
# in case converting from namespace
if isinstance(params, Namespace):
params = vars(params)
if params is None:
params = {}
return params
@staticmethod
def _flatten_dict(params: Dict[str, Any], delimiter: str = '/') -> Dict[str, Any]:
"""Flatten hierarchical dict e.g. {'a': {'b': 'c'}} -> {'a/b': 'c'}.
Args:
params: Dictionary contains hparams
delimiter: Delimiter to express the hierarchy. Defaults to '/'.
Returns:
Flatten dict.
Examples:
>>> LightningLoggerBase._flatten_dict({'a': {'b': 'c'}})
{'a/b': 'c'}
>>> LightningLoggerBase._flatten_dict({'a': {'b': 123}})
{'a/b': 123}
"""
def _dict_generator(input_dict, prefixes=None):
prefixes = prefixes[:] if prefixes else []
if isinstance(input_dict, dict):
for key, value in input_dict.items():
if isinstance(value, (dict, Namespace)):
value = vars(value) if isinstance(value, Namespace) else value
for d in _dict_generator(value, prefixes + [key]):
yield d
else:
yield prefixes + [key, value if value is not None else str(None)]
else:
yield prefixes + [input_dict if input_dict is None else str(input_dict)]
return {delimiter.join(keys): val for *keys, val in _dict_generator(params)}
@staticmethod
def _sanitize_params(params: Dict[str, Any]) -> Dict[str, Any]:
"""Returns params with non-primitvies converted to strings for logging
>>> params = {"float": 0.3,
... "int": 1,
... "string": "abc",
... "bool": True,
... "list": [1, 2, 3],
... "namespace": Namespace(foo=3),
... "layer": torch.nn.BatchNorm1d}
>>> import pprint
>>> pprint.pprint(LightningLoggerBase._sanitize_params(params)) # doctest: +NORMALIZE_WHITESPACE
{'bool': True,
'float': 0.3,
'int': 1,
'layer': "<class 'torch.nn.modules.batchnorm.BatchNorm1d'>",
'list': '[1, 2, 3]',
'namespace': 'Namespace(foo=3)',
'string': 'abc'}
"""
return {k: v if type(v) in [bool, int, float, str, torch.Tensor] else str(v) for k, v in params.items()}
@abstractmethod
def log_hyperparams(self, params: argparse.Namespace):
"""Record hyperparameters.
Args:
params: argparse.Namespace containing the hyperparameters
"""
def save(self) -> None:
"""Save log data."""
pass
def finalize(self, status: str) -> None:
"""Do any processing that is necessary to finalize an experiment.
Args:
status: Status that the experiment finished with (e.g. success, failed, aborted)
"""
pass
def close(self) -> None:
"""Do any cleanup that is necessary to close an experiment."""
agg_step, metrics_to_log = self._finalize_agg_metrics()
if metrics_to_log is not None:
self.log_metrics(metrics=metrics_to_log, step=agg_step)
@property
def rank(self) -> int:
"""Process rank. In general, metrics should only be logged by the process with rank 0."""
return self._rank
@rank.setter
def rank(self, value: int) -> None:
"""Set the process rank."""
self._rank = value
@property
@abstractmethod
def name(self) -> str:
"""Return the experiment name."""
@property
@abstractmethod
def version(self) -> Union[int, str]:
"""Return the experiment version."""
class LoggerCollection(LightningLoggerBase):
"""The `LoggerCollection` class is used to iterate all logging actions over the given `logger_iterable`.
Args:
logger_iterable: An iterable collection of loggers
"""
def __init__(self, logger_iterable: Iterable[LightningLoggerBase]):
super().__init__()
self._logger_iterable = logger_iterable
def __getitem__(self, index: int) -> LightningLoggerBase:
return [logger for logger in self._logger_iterable][index]
@property
def experiment(self) -> List[Any]:
return [logger.experiment for logger in self._logger_iterable]
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
[logger.log_metrics(metrics, step) for logger in self._logger_iterable]
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
[logger.log_hyperparams(params) for logger in self._logger_iterable]
def save(self) -> None:
[logger.save() for logger in self._logger_iterable]
def finalize(self, status: str) -> None:
[logger.finalize(status) for logger in self._logger_iterable]
def close(self) -> None:
[logger.close() for logger in self._logger_iterable]
@LightningLoggerBase.rank.setter
def rank(self, value: int) -> None:
self._rank = value
for logger in self._logger_iterable:
logger.rank = value
@property
def name(self) -> str:
return '_'.join([str(logger.name) for logger in self._logger_iterable])
@property
def version(self) -> str:
return '_'.join([str(logger.version) for logger in self._logger_iterable])
def merge_dicts(
dicts: Sequence[Mapping],
agg_key_funcs: Optional[Mapping[str, Callable[[Sequence[float]], float]]] = None,
default_func: Callable[[Sequence[float]], float] = np.mean
) -> Dict:
"""Merge a sequence with dictionaries into one dictionary by aggregating the
same keys with some given function.
Args:
dicts:
Sequence of dictionaries to be merged.
agg_key_funcs:
Mapping from key name to function. This function will aggregate a
list of values, obtained from the same key of all dictionaries.
If some key has no specified aggregation function, the default one
will be used. Default is: None (all keys will be aggregated by the
default function).
default_func:
Default function to aggregate keys, which are not presented in the
`agg_key_funcs` map.
Returns:
Dictionary with merged values.
Examples:
>>> import pprint
>>> d1 = {'a': 1.7, 'b': 2.0, 'c': 1}
>>> d2 = {'a': 1.1, 'b': 2.2, 'v': 1}
>>> d3 = {'a': 1.1, 'v': 2.3}
>>> dflt_func = min
>>> agg_funcs = {'a': np.mean, 'v': max}
>>> pprint.pprint(merge_dicts([d1, d2, d3], agg_funcs, dflt_func))
{'a': 1.3, 'b': 2.0, 'c': 1, 'v': 2.3}
"""
keys = list(functools.reduce(operator.or_, [set(d.keys()) for d in dicts]))
d_out = {}
for k in keys:
fn = agg_key_funcs.get(k, default_func) if agg_key_funcs else default_func
agg_val = fn([v for v in [d_in.get(k) for d_in in dicts] if v is not None])
d_out[k] = agg_val
return d_out