lightning/pytorch_lightning/tuner/lr_finder.py

442 lines
15 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import logging
import os
import uuid
from functools import wraps
from typing import Optional, Sequence
import numpy as np
import torch
from torch.optim.lr_scheduler import _LRScheduler
import pytorch_lightning as pl
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.core.optimizer import _get_default_scheduler_config, _init_optimizers_and_lr_schedulers
from pytorch_lightning.loggers.base import DummyLogger
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.cloud_io import get_filesystem
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.parsing import lightning_hasattr, lightning_setattr
# check if ipywidgets is installed before importing tqdm.auto
# to ensure it won't fail and a progress bar is displayed
if importlib.util.find_spec("ipywidgets") is not None:
from tqdm.auto import tqdm
else:
from tqdm import tqdm
log = logging.getLogger(__name__)
def _determine_lr_attr_name(trainer: "pl.Trainer", model: "pl.LightningModule") -> str:
if isinstance(trainer.auto_lr_find, str):
if not lightning_hasattr(model, trainer.auto_lr_find):
raise MisconfigurationException(
f"`auto_lr_find` was set to {trainer.auto_lr_find}, however"
" could not find this as a field in `model` or `model.hparams`."
)
return trainer.auto_lr_find
attr_options = ("lr", "learning_rate")
for attr in attr_options:
if lightning_hasattr(model, attr):
return attr
raise MisconfigurationException(
"When `auto_lr_find=True`, either `model` or `model.hparams` should"
f" have one of these fields: {attr_options} overridden."
)
class _LRFinder:
"""LR finder object. This object stores the results of lr_find().
Args:
mode: either `linear` or `exponential`, how to increase lr after each step
lr_min: lr to start search from
lr_max: lr to stop search
num_training: number of steps to take between lr_min and lr_max
Example::
# Run lr finder
lr_finder = trainer.lr_find(model)
# Results stored in
lr_finder.results
# Plot using
lr_finder.plot()
# Get suggestion
lr = lr_finder.suggestion()
"""
def __init__(self, mode: str, lr_min: float, lr_max: float, num_training: int):
assert mode in ("linear", "exponential"), "mode should be either `linear` or `exponential`"
self.mode = mode
self.lr_min = lr_min
self.lr_max = lr_max
self.num_training = num_training
self.results = {}
self._total_batch_idx = 0 # for debug purpose
def _exchange_scheduler(self, trainer: "pl.Trainer", model: "pl.LightningModule"):
"""Decorate `trainer.strategy.setup_optimizers` method such that it sets the user's originally specified
optimizer together with a new scheduler that takes care of the learning rate search."""
setup_optimizers = trainer.strategy.setup_optimizers
@wraps(setup_optimizers)
def func(trainer):
# Decide the structure of the output from _init_optimizers_and_lr_schedulers
optimizers, _, _ = _init_optimizers_and_lr_schedulers(trainer.lightning_module)
if len(optimizers) != 1:
raise MisconfigurationException(
f"`model.configure_optimizers()` returned {len(optimizers)}, but"
" learning rate finder only works with single optimizer"
)
optimizer = optimizers[0]
new_lrs = [self.lr_min] * len(optimizer.param_groups)
for param_group, new_lr in zip(optimizer.param_groups, new_lrs):
param_group["lr"] = new_lr
param_group["initial_lr"] = new_lr
args = (optimizer, self.lr_max, self.num_training)
scheduler = _LinearLR(*args) if self.mode == "linear" else _ExponentialLR(*args)
sched_config = _get_default_scheduler_config()
sched_config.update({"scheduler": scheduler, "interval": "step"})
trainer.strategy.optimizers = [optimizer]
trainer.strategy.lr_schedulers = [sched_config]
trainer.strategy.optimizer_frequencies = []
return func
def plot(self, suggest: bool = False, show: bool = False):
"""Plot results from lr_find run
Args:
suggest: if True, will mark suggested lr to use with a red point
show: if True, will show figure
"""
import matplotlib.pyplot as plt
lrs = self.results["lr"]
losses = self.results["loss"]
fig, ax = plt.subplots()
# Plot loss as a function of the learning rate
ax.plot(lrs, losses)
if self.mode == "exponential":
ax.set_xscale("log")
ax.set_xlabel("Learning rate")
ax.set_ylabel("Loss")
if suggest:
_ = self.suggestion()
if self._optimal_idx:
ax.plot(lrs[self._optimal_idx], losses[self._optimal_idx], markersize=10, marker="o", color="red")
if show:
plt.show()
return fig
def suggestion(self, skip_begin: int = 10, skip_end: int = 1):
"""This will propose a suggestion for choice of initial learning rate as the point with the steepest
negative gradient.
Returns:
lr: suggested initial learning rate to use
skip_begin: how many samples to skip in the beginning. Prevent too naive estimates
skip_end: how many samples to skip in the end. Prevent too optimistic estimates
"""
try:
loss = np.array(self.results["loss"][skip_begin:-skip_end])
loss = loss[np.isfinite(loss)]
min_grad = np.gradient(loss).argmin()
self._optimal_idx = min_grad + skip_begin
return self.results["lr"][self._optimal_idx]
# todo: specify the possible exception
except Exception:
log.exception("Failed to compute suggesting for `lr`. There might not be enough points.")
self._optimal_idx = None
def lr_find(
trainer: "pl.Trainer",
model: "pl.LightningModule",
min_lr: float = 1e-8,
max_lr: float = 1,
num_training: int = 100,
mode: str = "exponential",
early_stop_threshold: float = 4.0,
update_attr: bool = False,
) -> Optional[_LRFinder]:
"""See :meth:`~pytorch_lightning.tuner.tuning.Tuner.lr_find`"""
if trainer.fast_dev_run:
rank_zero_warn("Skipping learning rate finder since fast_dev_run is enabled.")
return
# Determine lr attr
if update_attr:
lr_attr_name = _determine_lr_attr_name(trainer, model)
save_path = os.path.join(trainer.default_root_dir, f"lr_find_temp_model_{uuid.uuid4()}.ckpt")
__lr_finder_dump_params(trainer, model)
# Prevent going into infinite loop
trainer.auto_lr_find = False
# Initialize lr finder object (stores results)
lr_finder = _LRFinder(mode, min_lr, max_lr, num_training)
# Use special lr logger callback
trainer.callbacks = [_LRCallback(num_training, early_stop_threshold, progress_bar_refresh_rate=1)]
# No logging
trainer.logger = DummyLogger() if trainer.logger is not None else None
# Max step set to number of iterations
trainer.fit_loop.max_steps = num_training
# Disable standard progress bar for fit
if trainer.progress_bar_callback:
trainer.progress_bar_callback.disable()
# Required for saving the model
trainer.optimizers, trainer.lr_schedulers = [], []
trainer.model = model
# Dump model checkpoint
trainer.save_checkpoint(str(save_path))
# Configure optimizer and scheduler
trainer.strategy.setup_optimizers = lr_finder._exchange_scheduler(trainer, model)
# Fit, lr & loss logged in callback
trainer.tuner._run(model)
# Prompt if we stopped early
if trainer.global_step != num_training:
log.info(f"LR finder stopped early after {trainer.global_step} steps due to diverging loss.")
# Transfer results from callback to lr finder object
lr_finder.results.update({"lr": trainer.callbacks[0].lrs, "loss": trainer.callbacks[0].losses})
lr_finder._total_batch_idx = trainer.fit_loop.total_batch_idx # for debug purpose
# Reset model state
if trainer.is_global_zero:
trainer.checkpoint_connector.restore(str(save_path))
fs = get_filesystem(str(save_path))
if fs.exists(save_path):
fs.rm(save_path)
# Finish by resetting variables so trainer is ready to fit model
__lr_finder_restore_params(trainer, model)
if trainer.progress_bar_callback:
trainer.progress_bar_callback.enable()
# Update lr attr if required
if update_attr:
lr = lr_finder.suggestion()
# TODO: log lr.results to self.logger
lightning_setattr(model, lr_attr_name, lr)
log.info(f"Learning rate set to {lr}")
return lr_finder
def __lr_finder_dump_params(trainer, model):
# Prevent going into infinite loop
trainer.__dumped_params = {
"auto_lr_find": trainer.auto_lr_find,
"callbacks": trainer.callbacks,
"logger": trainer.logger,
"global_step": trainer.global_step,
"max_steps": trainer.max_steps,
"checkpoint_callback": trainer.checkpoint_callback,
"current_epoch": trainer.current_epoch,
}
def __lr_finder_restore_params(trainer, model):
trainer.auto_lr_find = trainer.__dumped_params["auto_lr_find"]
trainer.logger = trainer.__dumped_params["logger"]
trainer.callbacks = trainer.__dumped_params["callbacks"]
trainer.fit_loop.global_step = trainer.__dumped_params["global_step"]
trainer.fit_loop.max_steps = trainer.__dumped_params["max_steps"]
trainer.fit_loop.current_epoch = trainer.__dumped_params["current_epoch"]
del trainer.__dumped_params
class _LRCallback(Callback):
"""Special callback used by the learning rate finder. This callbacks log the learning rate before each batch
and log the corresponding loss after each batch.
Args:
num_training: number of iterations done by the learning rate finder
early_stop_threshold: threshold for stopping the search. If the
loss at any point is larger than ``early_stop_threshold*best_loss``
then the search is stopped. To disable, set to ``None``.
progress_bar_refresh_rate: rate to refresh the progress bar for
the learning rate finder
beta: smoothing value, the loss being logged is a running average of
loss values logged until now. ``beta`` controls the forget rate i.e.
if ``beta=0`` all past information is ignored.
"""
def __init__(
self,
num_training: int,
early_stop_threshold: float = 4.0,
progress_bar_refresh_rate: int = 0,
beta: float = 0.98,
):
self.num_training = num_training
self.early_stop_threshold = early_stop_threshold
self.beta = beta
self.losses = []
self.lrs = []
self.avg_loss = 0.0
self.best_loss = 0.0
self.progress_bar_refresh_rate = progress_bar_refresh_rate
self.progress_bar = None
def on_batch_start(self, trainer, pl_module):
"""Called before each training batch, logs the lr that will be used."""
if (trainer.fit_loop.batch_idx + 1) % trainer.accumulate_grad_batches != 0:
return
if self.progress_bar_refresh_rate and self.progress_bar is None:
self.progress_bar = tqdm(desc="Finding best initial lr", total=self.num_training)
self.lrs.append(trainer.lr_schedulers[0]["scheduler"].lr[0])
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
"""Called when the training batch ends, logs the calculated loss."""
if (trainer.fit_loop.batch_idx + 1) % trainer.accumulate_grad_batches != 0:
return
if self.progress_bar:
self.progress_bar.update()
current_loss = trainer.fit_loop.running_loss.last().item()
current_step = trainer.global_step
# Avg loss (loss with momentum) + smoothing
self.avg_loss = self.beta * self.avg_loss + (1 - self.beta) * current_loss
smoothed_loss = self.avg_loss / (1 - self.beta ** (current_step + 1))
# Check if we diverging
if self.early_stop_threshold is not None:
if current_step > 1 and smoothed_loss > self.early_stop_threshold * self.best_loss:
trainer.fit_loop.max_steps = current_step # stop signal
if self.progress_bar:
self.progress_bar.close()
# Save best loss for diverging checking
if smoothed_loss < self.best_loss or current_step == 1:
self.best_loss = smoothed_loss
self.losses.append(smoothed_loss)
class _LinearLR(_LRScheduler):
"""Linearly increases the learning rate between two boundaries over a number of iterations.
Args:
optimizer: wrapped optimizer.
end_lr: the final learning rate.
num_iter: the number of iterations over which the test occurs.
last_epoch: the index of last epoch. Default: -1.
"""
last_epoch: int
base_lrs: Sequence
def __init__(self, optimizer: torch.optim.Optimizer, end_lr: float, num_iter: int, last_epoch: int = -1):
self.end_lr = end_lr
self.num_iter = num_iter
super().__init__(optimizer, last_epoch)
def get_lr(self):
curr_iter = self.last_epoch + 1
r = curr_iter / self.num_iter
if self.last_epoch > 0:
val = [base_lr + r * (self.end_lr - base_lr) for base_lr in self.base_lrs]
else:
val = [base_lr for base_lr in self.base_lrs]
self._lr = val
return val
@property
def lr(self):
return self._lr
class _ExponentialLR(_LRScheduler):
"""Exponentially increases the learning rate between two boundaries over a number of iterations.
Arguments:
optimizer: wrapped optimizer.
end_lr: the final learning rate.
num_iter: the number of iterations over which the test occurs.
last_epoch: the index of last epoch. Default: -1.
"""
last_epoch: int
base_lrs: Sequence
def __init__(self, optimizer: torch.optim.Optimizer, end_lr: float, num_iter: int, last_epoch: int = -1):
self.end_lr = end_lr
self.num_iter = num_iter
super().__init__(optimizer, last_epoch)
def get_lr(self):
curr_iter = self.last_epoch + 1
r = curr_iter / self.num_iter
if self.last_epoch > 0:
val = [base_lr * (self.end_lr / base_lr) ** r for base_lr in self.base_lrs]
else:
val = [base_lr for base_lr in self.base_lrs]
self._lr = val
return val
@property
def lr(self):
return self._lr