lightning/tests/trainer/test_trainer_cli.py

220 lines
8.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import pickle
from argparse import ArgumentParser, Namespace
from unittest import mock
import pytest
import tests.helpers.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.utilities import argparse
from tests.helpers.runif import RunIf
@mock.patch("argparse.ArgumentParser.parse_args")
def test_default_args(mock_argparse, tmpdir):
"""Tests default argument parser for Trainer"""
mock_argparse.return_value = Namespace(**Trainer.default_attributes())
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
parser = ArgumentParser(add_help=False)
args = parser.parse_args()
args.logger = logger
args.max_epochs = 5
trainer = Trainer.from_argparse_args(args)
assert isinstance(trainer, Trainer)
assert trainer.max_epochs == 5
@pytest.mark.parametrize("cli_args", [["--accumulate_grad_batches=22"], ["--weights_save_path=./"], []])
def test_add_argparse_args_redefined(cli_args: list):
"""Redefines some default Trainer arguments via the cli and
tests the Trainer initialization correctness.
"""
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
args = parser.parse_args(cli_args)
# make sure we can pickle args
pickle.dumps(args)
# Check few deprecated args are not in namespace:
for depr_name in ("gradient_clip", "nb_gpu_nodes", "max_nb_epochs"):
assert depr_name not in args
trainer = Trainer.from_argparse_args(args=args)
pickle.dumps(trainer)
assert isinstance(trainer, Trainer)
@pytest.mark.parametrize("cli_args", [["--accumulate_grad_batches=22"], ["--weights_save_path=./"], []])
def test_add_argparse_args(cli_args: list):
"""Simple test ensuring Trainer.add_argparse_args works."""
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args(cli_args)
assert Trainer.from_argparse_args(args)
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parser, use_argument_group=False)
args = parser.parse_args(cli_args)
assert Trainer.from_argparse_args(args)
def test_get_init_arguments_and_types():
"""Asserts a correctness of the `get_init_arguments_and_types` Trainer classmethod."""
args = argparse.get_init_arguments_and_types(Trainer)
parameters = inspect.signature(Trainer).parameters
assert len(parameters) == len(args)
for arg in args:
assert parameters[arg[0]].default == arg[2]
kwargs = {arg[0]: arg[2] for arg in args}
trainer = Trainer(**kwargs)
assert isinstance(trainer, Trainer)
@pytest.mark.parametrize("cli_args", [["--callbacks=1", "--logger"], ["--foo", "--bar=1"]])
def test_add_argparse_args_redefined_error(cli_args: list, monkeypatch):
"""Asserts thar an error raised in case of passing not default cli arguments."""
class _UnkArgError(Exception):
pass
def _raise():
raise _UnkArgError
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
monkeypatch.setattr(parser, "exit", lambda *args: _raise(), raising=True)
with pytest.raises(_UnkArgError):
parser.parse_args(cli_args)
@pytest.mark.parametrize(
["cli_args", "expected"],
[
pytest.param(
"--auto_lr_find --auto_scale_batch_size power", {"auto_lr_find": True, "auto_scale_batch_size": "power"}
),
pytest.param(
"--auto_lr_find any_string --auto_scale_batch_size",
{"auto_lr_find": "any_string", "auto_scale_batch_size": True},
),
pytest.param(
"--auto_lr_find TRUE --auto_scale_batch_size FALSE", {"auto_lr_find": True, "auto_scale_batch_size": False}
),
pytest.param(
"--auto_lr_find t --auto_scale_batch_size ON", {"auto_lr_find": True, "auto_scale_batch_size": True}
),
pytest.param(
"--auto_lr_find 0 --auto_scale_batch_size n", {"auto_lr_find": False, "auto_scale_batch_size": False}
),
pytest.param(
"",
{
# These parameters are marked as Optional[...] in Trainer.__init__, with None as default.
# They should not be changed by the argparse interface.
"min_steps": None,
"max_steps": None,
"log_gpu_memory": None,
"accelerator": None,
"weights_save_path": None,
"truncated_bptt_steps": None,
"resume_from_checkpoint": None,
"profiler": None,
},
),
],
)
def test_argparse_args_parsing(cli_args, expected):
"""Test multi type argument with bool."""
cli_args = cli_args.split(" ") if cli_args else []
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args):
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
args = Trainer.parse_argparser(parser)
for k, v in expected.items():
assert getattr(args, k) == v
assert Trainer.from_argparse_args(args)
@RunIf(min_python="3.7.0")
@pytest.mark.parametrize(
"cli_args,expected",
[("", False), ("--fast_dev_run=0", False), ("--fast_dev_run=True", True), ("--fast_dev_run 2", 2)],
)
def test_argparse_args_parsing_fast_dev_run(cli_args, expected):
"""Test multi type argument with bool."""
cli_args = cli_args.split(" ") if cli_args else []
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args):
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
args = Trainer.parse_argparser(parser)
assert args.fast_dev_run is expected
@pytest.mark.parametrize(
["cli_args", "expected_parsed", "expected_device_ids"],
[pytest.param("", None, None), pytest.param("--gpus 1", 1, [0]), pytest.param("--gpus 0,", "0,", [0])],
)
@RunIf(min_gpus=1)
def test_argparse_args_parsing_gpus(cli_args, expected_parsed, expected_device_ids):
"""Test multi type argument with bool."""
cli_args = cli_args.split(" ") if cli_args else []
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args):
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
args = Trainer.parse_argparser(parser)
assert args.gpus == expected_parsed
trainer = Trainer.from_argparse_args(args)
assert trainer.data_parallel_device_ids == expected_device_ids
@RunIf(min_python="3.7.0")
@pytest.mark.parametrize(
["cli_args", "extra_args"],
[
pytest.param({}, {}),
pytest.param({"logger": False}, {}),
pytest.param({"logger": False}, {"logger": True}),
pytest.param({"logger": False}, {"checkpoint_callback": True}),
],
)
def test_init_from_argparse_args(cli_args, extra_args):
unknown_args = dict(unknown_arg=0)
# unkown args in the argparser/namespace should be ignored
with mock.patch("pytorch_lightning.Trainer.__init__", autospec=True, return_value=None) as init:
trainer = Trainer.from_argparse_args(Namespace(**cli_args, **unknown_args), **extra_args)
expected = dict(cli_args)
expected.update(extra_args) # extra args should override any cli arg
init.assert_called_with(trainer, **expected)
# passing in unknown manual args should throw an error
with pytest.raises(TypeError, match=r"__init__\(\) got an unexpected keyword argument 'unknown_arg'"):
Trainer.from_argparse_args(Namespace(**cli_args), **extra_args, **unknown_args)