lightning/tests/trainer/test_config_validator.py

157 lines
5.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers import BoringModel, RandomDataset
def test_wrong_train_setting(tmpdir):
"""
* Test that an error is thrown when no `train_dataloader()` is defined
* Test that an error is thrown when no `training_step()` is defined
"""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException, match=r"No `train_dataloader\(\)` method defined."):
model = BoringModel()
model.train_dataloader = None
trainer.fit(model)
with pytest.raises(MisconfigurationException, match=r"No `training_step\(\)` method defined."):
model = BoringModel()
model.training_step = None
trainer.fit(model)
def test_wrong_configure_optimizers(tmpdir):
"""Test that an error is thrown when no `configure_optimizers()` is defined"""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException, match=r"No `configure_optimizers\(\)` method defined."):
model = BoringModel()
model.configure_optimizers = None
trainer.fit(model)
def test_fit_val_loop_config(tmpdir):
"""
When either val loop or val data are missing raise warning
"""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# no val data has val loop
with pytest.warns(UserWarning, match=r"you passed in a val_dataloader but have no validation_step"):
model = BoringModel()
model.validation_step = None
trainer.fit(model)
# has val loop but no val data
with pytest.warns(UserWarning, match=r"you defined a validation_step but have no val_dataloader"):
model = BoringModel()
model.val_dataloader = None
trainer.fit(model)
def test_test_loop_config(tmpdir):
"""
When either test loop or test data are missing
"""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# has test loop but no test data
with pytest.warns(UserWarning, match=r"you defined a test_step but have no test_dataloader"):
model = BoringModel()
model.test_dataloader = None
trainer.test(model)
# has test data but no test loop
with pytest.warns(UserWarning, match=r"you passed in a test_dataloader but have no test_step"):
model = BoringModel()
model.test_step = None
trainer.test(model)
def test_val_loop_config(tmpdir):
"""
When either validation loop or validation data are missing
"""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# has val loop but no val data
with pytest.warns(UserWarning, match=r"you defined a validation_step but have no val_dataloader"):
model = BoringModel()
model.val_dataloader = None
trainer.validate(model)
# has val data but no val loop
with pytest.warns(UserWarning, match=r"you passed in a val_dataloader but have no validation_step"):
model = BoringModel()
model.validation_step = None
trainer.validate(model)
@pytest.mark.parametrize("datamodule", [False, True])
def test_trainer_predict_verify_config(tmpdir, datamodule):
class TestModel(LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
class TestLightningDataModule(LightningDataModule):
def __init__(self, dataloaders):
super().__init__()
self._dataloaders = dataloaders
def test_dataloader(self):
return self._dataloaders
def predict_dataloader(self):
return self._dataloaders
data = [torch.utils.data.DataLoader(RandomDataset(32, 2)), torch.utils.data.DataLoader(RandomDataset(32, 2))]
if datamodule:
data = TestLightningDataModule(data)
model = TestModel()
trainer = Trainer(default_root_dir=tmpdir)
results = trainer.predict(model, data)
assert len(results) == 2
assert results[0][0].shape == torch.Size([1, 2])
model.predict_dataloader = None
with pytest.raises(MisconfigurationException, match="Dataloader not found for `Trainer.predict`"):
trainer.predict(model)
def test_trainer_manual_optimization_config(tmpdir):
"""Test error message when requesting Trainer features unsupported with manual optimization"""
model = BoringModel()
model.automatic_optimization = False
trainer = Trainer(gradient_clip_val=1.0)
with pytest.raises(MisconfigurationException, match="Automatic gradient clipping is not supported"):
trainer.fit(model)
trainer = Trainer(accumulate_grad_batches=2)
with pytest.raises(MisconfigurationException, match="Automatic gradient accumulation is not supported"):
trainer.fit(model)