157 lines
5.4 KiB
Python
157 lines
5.4 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers import BoringModel, RandomDataset
|
|
|
|
|
|
def test_wrong_train_setting(tmpdir):
|
|
"""
|
|
* Test that an error is thrown when no `train_dataloader()` is defined
|
|
* Test that an error is thrown when no `training_step()` is defined
|
|
"""
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
|
|
with pytest.raises(MisconfigurationException, match=r"No `train_dataloader\(\)` method defined."):
|
|
model = BoringModel()
|
|
model.train_dataloader = None
|
|
trainer.fit(model)
|
|
|
|
with pytest.raises(MisconfigurationException, match=r"No `training_step\(\)` method defined."):
|
|
model = BoringModel()
|
|
model.training_step = None
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_wrong_configure_optimizers(tmpdir):
|
|
"""Test that an error is thrown when no `configure_optimizers()` is defined"""
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
|
|
with pytest.raises(MisconfigurationException, match=r"No `configure_optimizers\(\)` method defined."):
|
|
model = BoringModel()
|
|
model.configure_optimizers = None
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_fit_val_loop_config(tmpdir):
|
|
"""
|
|
When either val loop or val data are missing raise warning
|
|
"""
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
|
|
# no val data has val loop
|
|
with pytest.warns(UserWarning, match=r"you passed in a val_dataloader but have no validation_step"):
|
|
model = BoringModel()
|
|
model.validation_step = None
|
|
trainer.fit(model)
|
|
|
|
# has val loop but no val data
|
|
with pytest.warns(UserWarning, match=r"you defined a validation_step but have no val_dataloader"):
|
|
model = BoringModel()
|
|
model.val_dataloader = None
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_test_loop_config(tmpdir):
|
|
"""
|
|
When either test loop or test data are missing
|
|
"""
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
|
|
# has test loop but no test data
|
|
with pytest.warns(UserWarning, match=r"you defined a test_step but have no test_dataloader"):
|
|
model = BoringModel()
|
|
model.test_dataloader = None
|
|
trainer.test(model)
|
|
|
|
# has test data but no test loop
|
|
with pytest.warns(UserWarning, match=r"you passed in a test_dataloader but have no test_step"):
|
|
model = BoringModel()
|
|
model.test_step = None
|
|
trainer.test(model)
|
|
|
|
|
|
def test_val_loop_config(tmpdir):
|
|
"""
|
|
When either validation loop or validation data are missing
|
|
"""
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
|
|
# has val loop but no val data
|
|
with pytest.warns(UserWarning, match=r"you defined a validation_step but have no val_dataloader"):
|
|
model = BoringModel()
|
|
model.val_dataloader = None
|
|
trainer.validate(model)
|
|
|
|
# has val data but no val loop
|
|
with pytest.warns(UserWarning, match=r"you passed in a val_dataloader but have no validation_step"):
|
|
model = BoringModel()
|
|
model.validation_step = None
|
|
trainer.validate(model)
|
|
|
|
|
|
@pytest.mark.parametrize("datamodule", [False, True])
|
|
def test_trainer_predict_verify_config(tmpdir, datamodule):
|
|
class TestModel(LightningModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = torch.nn.Linear(32, 2)
|
|
|
|
def forward(self, x):
|
|
return self.layer(x)
|
|
|
|
class TestLightningDataModule(LightningDataModule):
|
|
def __init__(self, dataloaders):
|
|
super().__init__()
|
|
self._dataloaders = dataloaders
|
|
|
|
def test_dataloader(self):
|
|
return self._dataloaders
|
|
|
|
def predict_dataloader(self):
|
|
return self._dataloaders
|
|
|
|
data = [torch.utils.data.DataLoader(RandomDataset(32, 2)), torch.utils.data.DataLoader(RandomDataset(32, 2))]
|
|
if datamodule:
|
|
data = TestLightningDataModule(data)
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(default_root_dir=tmpdir)
|
|
results = trainer.predict(model, data)
|
|
|
|
assert len(results) == 2
|
|
assert results[0][0].shape == torch.Size([1, 2])
|
|
|
|
model.predict_dataloader = None
|
|
|
|
with pytest.raises(MisconfigurationException, match="Dataloader not found for `Trainer.predict`"):
|
|
trainer.predict(model)
|
|
|
|
|
|
def test_trainer_manual_optimization_config(tmpdir):
|
|
"""Test error message when requesting Trainer features unsupported with manual optimization"""
|
|
model = BoringModel()
|
|
model.automatic_optimization = False
|
|
|
|
trainer = Trainer(gradient_clip_val=1.0)
|
|
with pytest.raises(MisconfigurationException, match="Automatic gradient clipping is not supported"):
|
|
trainer.fit(model)
|
|
|
|
trainer = Trainer(accumulate_grad_batches=2)
|
|
with pytest.raises(MisconfigurationException, match="Automatic gradient accumulation is not supported"):
|
|
trainer.fit(model)
|