lightning/tests/trainer/loops/test_evaluation_loop.py

104 lines
4.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest import mock
import torch
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from tests.helpers.boring_model import BoringModel, RandomDataset
from tests.helpers.runif import RunIf
@mock.patch("pytorch_lightning.loops.dataloader.evaluation_loop.EvaluationLoop.on_evaluation_epoch_end")
def test_on_evaluation_epoch_end(eval_epoch_end_mock, tmpdir):
"""
Tests that `on_evaluation_epoch_end` is called
for `on_validation_epoch_end` and `on_test_epoch_end` hooks
"""
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=2, weights_summary=None
)
trainer.fit(model)
# sanity + 2 epochs
assert eval_epoch_end_mock.call_count == 3
trainer.test()
# sanity + 2 epochs + called once for test
assert eval_epoch_end_mock.call_count == 4
@mock.patch(
"pytorch_lightning.trainer.connectors.logger_connector.logger_connector.LoggerConnector.update_eval_epoch_metrics"
)
def test_log_epoch_metrics_before_on_evaluation_end(update_eval_epoch_metrics_mock, tmpdir):
"""Test that the epoch metrics are logged before the `on_evalutaion_end` hook is fired"""
order = []
update_eval_epoch_metrics_mock.side_effect = lambda: order.append("log_epoch_metrics")
class LessBoringModel(BoringModel):
def on_validation_end(self):
order.append("on_validation_end")
super().on_validation_end()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1, weights_summary=None, num_sanity_val_steps=0)
trainer.fit(LessBoringModel())
assert order == ["log_epoch_metrics", "on_validation_end"]
@RunIf(min_gpus=1)
def test_memory_consumption_validation(tmpdir):
"""Test that the training batch is no longer in GPU memory when running validation"""
initial_memory = torch.cuda.memory_allocated(0)
class BoringLargeBatchModel(BoringModel):
@property
def num_params(self):
return sum(p.numel() for p in self.parameters())
def train_dataloader(self):
# batch target memory >= 100x boring_model size
batch_size = self.num_params * 100 // 32 + 1
return DataLoader(RandomDataset(32, 5000), batch_size=batch_size)
def val_dataloader(self):
return self.train_dataloader()
def training_step(self, batch, batch_idx):
# there is a batch and the boring model, but not two batches on gpu, assume 32 bit = 4 bytes
lower = 101 * self.num_params * 4
upper = 201 * self.num_params * 4
current = torch.cuda.memory_allocated(0)
assert lower < current
assert current - initial_memory < upper
return super().training_step(batch, batch_idx)
def validation_step(self, batch, batch_idx):
# there is a batch and the boring model, but not two batches on gpu, assume 32 bit = 4 bytes
lower = 101 * self.num_params * 4
upper = 201 * self.num_params * 4
current = torch.cuda.memory_allocated(0)
assert lower < current
assert current - initial_memory < upper
return super().validation_step(batch, batch_idx)
torch.cuda.empty_cache()
trainer = Trainer(gpus=1, default_root_dir=tmpdir, fast_dev_run=2, move_metrics_to_cpu=True, weights_summary=None)
trainer.fit(BoringLargeBatchModel())