lightning/tests/trainer/dynamic_args/test_multiple_eval_dataload...

168 lines
5.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch.utils.data import Dataset
from pytorch_lightning import Trainer
from tests.helpers.boring_model import BoringModel
class RandomDatasetA(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return torch.zeros(1)
def __len__(self):
return self.len
class RandomDatasetB(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return torch.ones(1)
def __len__(self):
return self.len
def test_multiple_eval_dataloaders_tuple(tmpdir):
class TestModel(BoringModel):
def validation_step(self, batch, batch_idx, dataloader_idx):
if dataloader_idx == 0:
assert batch.sum() == 0
elif dataloader_idx == 1:
assert batch.sum() == 11
else:
raise Exception("should only have two dataloaders")
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def val_dataloader(self):
dl1 = torch.utils.data.DataLoader(RandomDatasetA(32, 64), batch_size=11)
dl2 = torch.utils.data.DataLoader(RandomDatasetB(32, 64), batch_size=11)
return [dl1, dl2]
model = TestModel()
model.validation_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
def test_multiple_eval_dataloaders_list(tmpdir):
class TestModel(BoringModel):
def validation_step(self, batch, batch_idx, dataloader_idx):
if dataloader_idx == 0:
assert batch.sum() == 0
elif dataloader_idx == 1:
assert batch.sum() == 11
else:
raise Exception("should only have two dataloaders")
def val_dataloader(self):
dl1 = torch.utils.data.DataLoader(RandomDatasetA(32, 64), batch_size=11)
dl2 = torch.utils.data.DataLoader(RandomDatasetB(32, 64), batch_size=11)
return dl1, dl2
model = TestModel()
model.validation_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
def test_multiple_optimizers_multiple_dataloaders(tmpdir):
"""
Tests that only training_step can be used
"""
class TestModel(BoringModel):
def on_train_epoch_start(self) -> None:
self.opt_0_seen = False
self.opt_1_seen = False
def training_step(self, batch, batch_idx, optimizer_idx):
if optimizer_idx == 0:
self.opt_0_seen = True
elif optimizer_idx == 1:
self.opt_1_seen = True
else:
raise Exception("should only have two optimizers")
self.training_step_called = True
loss = self.step(batch[0])
return loss
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def validation_step(self, batch, batch_idx, dataloader_idx):
if dataloader_idx == 0:
assert batch.sum() == 0
elif dataloader_idx == 1:
assert batch.sum() == 11
else:
raise Exception("should only have two dataloaders")
def val_dataloader(self):
dl1 = torch.utils.data.DataLoader(RandomDatasetA(32, 64), batch_size=11)
dl2 = torch.utils.data.DataLoader(RandomDatasetB(32, 64), batch_size=11)
return dl1, dl2
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
return optimizer, optimizer_2
model = TestModel()
model.validation_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
assert model.opt_0_seen
assert model.opt_1_seen