lightning/tests/core/test_datamodules.py

544 lines
18 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
from argparse import ArgumentParser
from typing import Any, Dict
from unittest import mock
from unittest.mock import call, PropertyMock
import pytest
import torch
from pytorch_lightning import LightningDataModule, Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.utilities import AttributeDict
from pytorch_lightning.utilities.model_helpers import is_overridden
from tests.helpers import BoringDataModule, BoringModel
from tests.helpers.datamodules import ClassifDataModule
from tests.helpers.runif import RunIf
from tests.helpers.simple_models import ClassificationModel
from tests.helpers.utils import reset_seed
@mock.patch("pytorch_lightning.trainer.trainer.Trainer.node_rank", new_callable=PropertyMock)
@mock.patch("pytorch_lightning.trainer.trainer.Trainer.local_rank", new_callable=PropertyMock)
def test_can_prepare_data(local_rank, node_rank):
model = BoringModel()
dm = BoringDataModule()
trainer = Trainer()
trainer.datamodule = dm
# 1 no DM
# prepare_data_per_node = True
# local rank = 0 (True)
trainer.prepare_data_per_node = True
dm.random_full = None
dm._has_prepared_data = False
local_rank.return_value = 0
assert trainer.local_rank == 0
assert trainer.data_connector.can_prepare_data()
trainer.data_connector.prepare_data(model)
assert dm.random_full is not None
# local rank = 1 (False)
dm.random_full = None
dm._has_prepared_data = False
local_rank.return_value = 1
assert trainer.local_rank == 1
assert not trainer.data_connector.can_prepare_data()
trainer.data_connector.prepare_data(model)
assert dm.random_full is None
# prepare_data_per_node = False (prepare across all nodes)
# global rank = 0 (True)
dm.random_full = None
dm._has_prepared_data = False
trainer.prepare_data_per_node = False
node_rank.return_value = 0
local_rank.return_value = 0
assert trainer.data_connector.can_prepare_data()
trainer.data_connector.prepare_data(model)
assert dm.random_full is not None
# global rank = 1 (False)
dm.random_full = None
dm._has_prepared_data = False
node_rank.return_value = 1
local_rank.return_value = 0
assert not trainer.data_connector.can_prepare_data()
trainer.data_connector.prepare_data(model)
assert dm.random_full is None
node_rank.return_value = 0
local_rank.return_value = 1
assert not trainer.data_connector.can_prepare_data()
trainer.data_connector.prepare_data(model)
assert dm.random_full is None
# 2 dm
# prepar per node = True
# local rank = 0 (True)
trainer.prepare_data_per_node = True
local_rank.return_value = 0
# is_overridden prepare data = True
# has been called
# False
dm._has_prepared_data = True
assert not trainer.data_connector.can_prepare_data()
# has not been called
# True
dm._has_prepared_data = False
assert trainer.data_connector.can_prepare_data()
# is_overridden prepare data = False
# True
dm.prepare_data = None
assert trainer.data_connector.can_prepare_data()
def test_hooks_no_recursion_error():
# hooks were appended in cascade every tine a new data module was instantiated leading to a recursion error.
# See https://github.com/PyTorchLightning/pytorch-lightning/issues/3652
class DummyDM(LightningDataModule):
def setup(self, *args, **kwargs):
pass
def prepare_data(self, *args, **kwargs):
pass
for i in range(1005):
dm = DummyDM()
dm.setup()
dm.prepare_data()
def test_helper_boringdatamodule():
dm = BoringDataModule()
dm.prepare_data()
dm.setup()
def test_helper_boringdatamodule_with_verbose_setup():
dm = BoringDataModule()
dm.prepare_data()
dm.setup("fit")
dm.setup("test")
def test_data_hooks_called():
dm = BoringDataModule()
assert not dm.has_prepared_data
assert not dm.has_setup_fit
assert not dm.has_setup_test
assert not dm.has_setup_validate
assert not dm.has_setup_predict
assert not dm.has_teardown_fit
assert not dm.has_teardown_test
assert not dm.has_teardown_validate
assert not dm.has_teardown_predict
dm.prepare_data()
assert dm.has_prepared_data
assert not dm.has_setup_fit
assert not dm.has_setup_test
assert not dm.has_setup_validate
assert not dm.has_setup_predict
assert not dm.has_teardown_fit
assert not dm.has_teardown_test
assert not dm.has_teardown_validate
assert not dm.has_teardown_predict
dm.setup()
assert dm.has_prepared_data
assert dm.has_setup_fit
assert dm.has_setup_test
assert dm.has_setup_validate
assert not dm.has_setup_predict
assert not dm.has_teardown_fit
assert not dm.has_teardown_test
assert not dm.has_teardown_validate
assert not dm.has_teardown_predict
dm.teardown()
assert dm.has_prepared_data
assert dm.has_setup_fit
assert dm.has_setup_test
assert dm.has_setup_validate
assert not dm.has_setup_predict
assert dm.has_teardown_fit
assert dm.has_teardown_test
assert dm.has_teardown_validate
assert not dm.has_teardown_predict
@pytest.mark.parametrize("use_kwarg", (False, True))
def test_data_hooks_called_verbose(use_kwarg):
dm = BoringDataModule()
dm.prepare_data()
assert not dm.has_setup_fit
assert not dm.has_setup_test
assert not dm.has_setup_validate
assert not dm.has_setup_predict
assert not dm.has_teardown_fit
assert not dm.has_teardown_test
assert not dm.has_teardown_validate
assert not dm.has_teardown_predict
dm.setup(stage="fit") if use_kwarg else dm.setup("fit")
assert dm.has_setup_fit
assert not dm.has_setup_validate
assert not dm.has_setup_test
assert not dm.has_setup_predict
dm.setup(stage="validate") if use_kwarg else dm.setup("validate")
assert dm.has_setup_fit
assert dm.has_setup_validate
assert not dm.has_setup_test
assert not dm.has_setup_predict
dm.setup(stage="test") if use_kwarg else dm.setup("test")
assert dm.has_setup_fit
assert dm.has_setup_validate
assert dm.has_setup_test
assert not dm.has_setup_predict
dm.setup(stage="predict") if use_kwarg else dm.setup("predict")
assert dm.has_setup_fit
assert dm.has_setup_validate
assert dm.has_setup_test
assert dm.has_setup_predict
dm.teardown(stage="fit") if use_kwarg else dm.teardown("fit")
assert dm.has_teardown_fit
assert not dm.has_teardown_validate
assert not dm.has_teardown_test
assert not dm.has_teardown_predict
dm.teardown(stage="validate") if use_kwarg else dm.teardown("validate")
assert dm.has_teardown_fit
assert dm.has_teardown_validate
assert not dm.has_teardown_test
assert not dm.has_teardown_predict
dm.teardown(stage="test") if use_kwarg else dm.teardown("test")
assert dm.has_teardown_fit
assert dm.has_teardown_validate
assert dm.has_teardown_test
assert not dm.has_teardown_predict
dm.teardown(stage="predict") if use_kwarg else dm.teardown("predict")
assert dm.has_teardown_fit
assert dm.has_teardown_validate
assert dm.has_teardown_test
assert dm.has_teardown_predict
def test_dm_add_argparse_args(tmpdir):
parser = ArgumentParser()
parser = BoringDataModule.add_argparse_args(parser)
args = parser.parse_args(["--data_dir", str(tmpdir)])
assert args.data_dir == str(tmpdir)
def test_dm_init_from_argparse_args(tmpdir):
parser = ArgumentParser()
parser = BoringDataModule.add_argparse_args(parser)
args = parser.parse_args(["--data_dir", str(tmpdir)])
dm = BoringDataModule.from_argparse_args(args)
dm.prepare_data()
dm.setup()
assert dm.data_dir == args.data_dir == str(tmpdir)
def test_dm_pickle_after_init():
dm = BoringDataModule()
pickle.dumps(dm)
def test_train_loop_only(tmpdir):
reset_seed()
dm = ClassifDataModule()
model = ClassificationModel()
model.validation_step = None
model.validation_step_end = None
model.validation_epoch_end = None
model.test_step = None
model.test_step_end = None
model.test_epoch_end = None
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, weights_summary=None)
# fit model
trainer.fit(model, datamodule=dm)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert trainer.callback_metrics["train_loss"] < 1.0
def test_train_val_loop_only(tmpdir):
reset_seed()
dm = ClassifDataModule()
model = ClassificationModel()
model.validation_step = None
model.validation_step_end = None
model.validation_epoch_end = None
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, weights_summary=None)
# fit model
trainer.fit(model, datamodule=dm)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert trainer.callback_metrics["train_loss"] < 1.0
def test_dm_checkpoint_save(tmpdir):
class CustomBoringModel(BoringModel):
def validation_step(self, batch, batch_idx):
out = super().validation_step(batch, batch_idx)
self.log("early_stop_on", out["x"])
return out
class CustomBoringDataModule(BoringDataModule):
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
checkpoint[self.__class__.__name__] = self.__class__.__name__
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
self.checkpoint_state = checkpoint.get(self.__class__.__name__)
reset_seed()
dm = CustomBoringDataModule()
model = CustomBoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=2,
limit_val_batches=1,
weights_summary=None,
callbacks=[ModelCheckpoint(dirpath=tmpdir, monitor="early_stop_on")],
)
# fit model
trainer.fit(model, dm)
assert trainer.state.finished, f"Training failed with {trainer.state}"
checkpoint_path = list(trainer.checkpoint_callback.best_k_models.keys())[0]
checkpoint = torch.load(checkpoint_path)
assert dm.__class__.__name__ in checkpoint
assert checkpoint[dm.__class__.__name__] == dm.__class__.__name__
def test_full_loop(tmpdir):
reset_seed()
dm = ClassifDataModule()
model = ClassificationModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, weights_summary=None, deterministic=True)
# fit model
trainer.fit(model, dm)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert dm.trainer is not None
# validate
result = trainer.validate(model, dm)
assert dm.trainer is not None
assert result[0]["val_acc"] > 0.7
# test
result = trainer.test(model, dm)
assert dm.trainer is not None
assert result[0]["test_acc"] > 0.6
@RunIf(min_gpus=1)
@mock.patch("pytorch_lightning.accelerators.accelerator.Accelerator.lightning_module", new_callable=PropertyMock)
def test_dm_apply_batch_transfer_handler(get_module_mock):
expected_device = torch.device("cuda", 0)
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
self.targets = data[1]
class CurrentTestDM(LightningDataModule):
rank = 0
transfer_batch_to_device_hook_rank = None
on_before_batch_transfer_hook_rank = None
on_after_batch_transfer_hook_rank = None
def on_before_batch_transfer(self, batch, dataloader_idx):
assert dataloader_idx is None
self.on_before_batch_transfer_hook_rank = self.rank
self.rank += 1
batch.samples += 1
return batch
def on_after_batch_transfer(self, batch, dataloader_idx):
assert dataloader_idx is None
assert batch.samples.device == batch.targets.device == expected_device
self.on_after_batch_transfer_hook_rank = self.rank
self.rank += 1
batch.targets *= 2
return batch
def transfer_batch_to_device(self, batch, device, dataloader_idx):
assert dataloader_idx is None
self.transfer_batch_to_device_hook_rank = self.rank
self.rank += 1
batch.samples = batch.samples.to(device)
batch.targets = batch.targets.to(device)
return batch
dm = CurrentTestDM()
model = BoringModel()
batch = CustomBatch((torch.zeros(5, 32), torch.ones(5, 1, dtype=torch.long)))
trainer = Trainer(gpus=1)
# running .fit() would require us to implement custom data loaders, we mock the model reference instead
get_module_mock.return_value = model
if is_overridden("transfer_batch_to_device", dm):
model.transfer_batch_to_device = dm.transfer_batch_to_device
model.on_before_batch_transfer = dm.on_before_batch_transfer
model.transfer_batch_to_device = dm.transfer_batch_to_device
model.on_after_batch_transfer = dm.on_after_batch_transfer
batch_gpu = trainer.accelerator.batch_to_device(batch, expected_device)
assert dm.on_before_batch_transfer_hook_rank == 0
assert dm.transfer_batch_to_device_hook_rank == 1
assert dm.on_after_batch_transfer_hook_rank == 2
assert batch_gpu.samples.device == batch_gpu.targets.device == expected_device
assert torch.allclose(batch_gpu.samples.cpu(), torch.ones(5, 32))
assert torch.allclose(batch_gpu.targets.cpu(), torch.ones(5, 1, dtype=torch.long) * 2)
def test_dm_reload_dataloaders_every_n_epochs(tmpdir):
"""
Test datamodule, where trainer argument
reload_dataloaders_every_n_epochs is set to a non negative integer
"""
class CustomBoringDataModule(BoringDataModule):
def __init__(self):
super().__init__()
self._epochs_called_for = []
def train_dataloader(self):
assert self.trainer.current_epoch not in self._epochs_called_for
self._epochs_called_for.append(self.trainer.current_epoch)
return super().train_dataloader()
dm = CustomBoringDataModule()
model = BoringModel()
model.validation_step = None
model.validation_step_end = None
model.validation_epoch_end = None
model.test_step = None
model.test_step_end = None
model.test_epoch_end = None
trainer = Trainer(default_root_dir=tmpdir, max_epochs=3, limit_train_batches=2, reload_dataloaders_every_n_epochs=2)
trainer.fit(model, dm)
class DummyDS(torch.utils.data.Dataset):
def __getitem__(self, index):
return 1
def __len__(self):
return 100
class DummyIDS(torch.utils.data.IterableDataset):
def __iter__(self):
yield 1
@pytest.mark.parametrize("iterable", (False, True))
def test_dm_init_from_datasets_dataloaders(iterable):
ds = DummyIDS if iterable else DummyDS
train_ds = ds()
dm = LightningDataModule.from_datasets(train_ds, batch_size=4, num_workers=0)
with mock.patch("pytorch_lightning.core.datamodule.DataLoader") as dl_mock:
dm.train_dataloader()
dl_mock.assert_called_once_with(train_ds, batch_size=4, shuffle=not iterable, num_workers=0, pin_memory=True)
assert dm.val_dataloader() is None
assert dm.test_dataloader() is None
train_ds_sequence = [ds(), ds()]
dm = LightningDataModule.from_datasets(train_ds_sequence, batch_size=4, num_workers=0)
with mock.patch("pytorch_lightning.core.datamodule.DataLoader") as dl_mock:
dm.train_dataloader()
dl_mock.assert_has_calls(
[
call(train_ds_sequence[0], batch_size=4, shuffle=not iterable, num_workers=0, pin_memory=True),
call(train_ds_sequence[1], batch_size=4, shuffle=not iterable, num_workers=0, pin_memory=True),
]
)
assert dm.val_dataloader() is None
assert dm.test_dataloader() is None
valid_ds = ds()
test_ds = ds()
dm = LightningDataModule.from_datasets(val_dataset=valid_ds, test_dataset=test_ds, batch_size=2, num_workers=0)
with mock.patch("pytorch_lightning.core.datamodule.DataLoader") as dl_mock:
dm.val_dataloader()
dl_mock.assert_called_with(valid_ds, batch_size=2, shuffle=False, num_workers=0, pin_memory=True)
dm.test_dataloader()
dl_mock.assert_called_with(test_ds, batch_size=2, shuffle=False, num_workers=0, pin_memory=True)
assert dm.train_dataloader() is None
valid_dss = [ds(), ds()]
test_dss = [ds(), ds()]
dm = LightningDataModule.from_datasets(train_ds, valid_dss, test_dss, batch_size=4, num_workers=0)
with mock.patch("pytorch_lightning.core.datamodule.DataLoader") as dl_mock:
dm.val_dataloader()
dm.test_dataloader()
dl_mock.assert_has_calls(
[
call(valid_dss[0], batch_size=4, shuffle=False, num_workers=0, pin_memory=True),
call(valid_dss[1], batch_size=4, shuffle=False, num_workers=0, pin_memory=True),
call(test_dss[0], batch_size=4, shuffle=False, num_workers=0, pin_memory=True),
call(test_dss[1], batch_size=4, shuffle=False, num_workers=0, pin_memory=True),
]
)
class DataModuleWithHparams(LightningDataModule):
def __init__(self, arg0, arg1, kwarg0=None):
super().__init__()
self.save_hyperparameters()
def test_simple_hyperparameters_saving():
data = DataModuleWithHparams(10, "foo", kwarg0="bar")
assert data.hparams == AttributeDict({"arg0": 10, "arg1": "foo", "kwarg0": "bar"})