201 lines
6.3 KiB
Python
201 lines
6.3 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from dataclasses import asdict, dataclass, field
|
|
from typing import Optional
|
|
|
|
|
|
@dataclass
|
|
class BaseProgress:
|
|
def state_dict(self) -> dict:
|
|
return asdict(self)
|
|
|
|
def load_state_dict(self, state_dict: dict) -> None:
|
|
self.__dict__.update(state_dict)
|
|
|
|
@classmethod
|
|
def from_state_dict(cls, state_dict: dict) -> "BaseProgress":
|
|
obj = cls()
|
|
obj.load_state_dict(state_dict)
|
|
return obj
|
|
|
|
|
|
@dataclass
|
|
class Tracker(BaseProgress):
|
|
"""
|
|
Track an event's progress.
|
|
|
|
Args:
|
|
ready: Intended to track the number of events ready to start.
|
|
started: Intended to be incremented after the event is started (e.g. after ``on_*_start`` runs).
|
|
processed: Intended to be incremented after the event is processed.
|
|
completed: Intended to be incremented after the event completes (e.g. after ``on_*_end`` runs).
|
|
|
|
Attributes set to ``None`` are treated as unused and are restricted.
|
|
"""
|
|
|
|
ready: Optional[int] = 0
|
|
started: Optional[int] = 0
|
|
processed: Optional[int] = 0
|
|
completed: Optional[int] = 0
|
|
|
|
def reset(self) -> None:
|
|
if self.ready is not None:
|
|
self.ready = 0
|
|
if self.started is not None:
|
|
self.started = 0
|
|
if self.processed is not None:
|
|
self.processed = 0
|
|
if self.completed is not None:
|
|
self.completed = 0
|
|
|
|
def __setattr__(self, key: str, value: int) -> None:
|
|
if getattr(self, key, 0) is None:
|
|
raise AttributeError(f"The '{key}' attribute is meant to be unused")
|
|
return super().__setattr__(key, value)
|
|
|
|
def __repr__(self) -> str:
|
|
# hide `None` fields
|
|
args = [f"{k}={v}" for k, v in self.__dict__.items() if v is not None]
|
|
return f"{self.__class__.__name__}({', '.join(args)})"
|
|
|
|
def reset_on_restart(self) -> None:
|
|
"""Reset the progress on restart"""
|
|
value = self.completed if self.processed is None else self.processed
|
|
|
|
if self.ready is not None:
|
|
self.ready = value
|
|
if self.started is not None:
|
|
self.started = value
|
|
if self.processed is not None:
|
|
self.processed = value
|
|
if self.completed is not None:
|
|
self.completed = value
|
|
|
|
|
|
@dataclass
|
|
class Progress(BaseProgress):
|
|
"""
|
|
Track aggregated and current progress.
|
|
|
|
Args:
|
|
total: Intended to track the total progress of an event
|
|
current: Intended to track the current progress of an event
|
|
"""
|
|
|
|
total: Tracker = field(default_factory=Tracker)
|
|
current: Tracker = field(default_factory=Tracker)
|
|
|
|
def increment_ready(self) -> None:
|
|
self.total.ready += 1
|
|
self.current.ready += 1
|
|
|
|
def increment_started(self) -> None:
|
|
self.total.started += 1
|
|
self.current.started += 1
|
|
|
|
def increment_processed(self) -> None:
|
|
self.total.processed += 1
|
|
self.current.processed += 1
|
|
|
|
def increment_completed(self) -> None:
|
|
self.total.completed += 1
|
|
self.current.completed += 1
|
|
|
|
@classmethod
|
|
def from_defaults(cls, **kwargs: Optional[int]) -> "Progress":
|
|
return cls(total=Tracker(**kwargs), current=Tracker(**kwargs))
|
|
|
|
def load_state_dict(self, state_dict: dict) -> None:
|
|
self.total.load_state_dict(state_dict["total"])
|
|
self.current.load_state_dict(state_dict["current"])
|
|
|
|
|
|
@dataclass
|
|
class DataLoaderProgress(Progress):
|
|
"""
|
|
Tracks the dataloader progress
|
|
These counters are local to a trainer rank. By default, they are not globally synced across all ranks.
|
|
|
|
Args:
|
|
total: Tracks the total dataloader progress
|
|
current: Tracks the current dataloader progress
|
|
"""
|
|
|
|
total: Tracker = field(default_factory=lambda: Tracker(started=None, processed=None))
|
|
current: Tracker = field(default_factory=lambda: Tracker(started=None, processed=None))
|
|
|
|
|
|
@dataclass
|
|
class SchedulerProgress(Progress):
|
|
"""
|
|
Tracks the scheduler progress
|
|
These counters are local to a trainer rank. By default, they are not globally synced across all ranks.
|
|
|
|
Args:
|
|
total: Tracks the total scheduler progress
|
|
current: Tracks the current scheduler progress
|
|
"""
|
|
|
|
total: Tracker = field(default_factory=lambda: Tracker(started=None, processed=None))
|
|
current: Tracker = field(default_factory=lambda: Tracker(started=None, processed=None))
|
|
|
|
|
|
@dataclass
|
|
class OptimizerProgress(BaseProgress):
|
|
"""
|
|
Track optimizer progress.
|
|
|
|
Args:
|
|
step: Tracks ``optimizer.step`` calls.
|
|
zero_grad: Tracks ``optimizer.zero_grad`` calls.
|
|
"""
|
|
|
|
step: Progress = field(default_factory=lambda: Progress.from_defaults(started=None, processed=None))
|
|
zero_grad: Progress = field(default_factory=lambda: Progress.from_defaults(processed=None))
|
|
|
|
def reset_on_epoch(self) -> None:
|
|
self.step.current.reset()
|
|
self.zero_grad.current.reset()
|
|
|
|
def load_state_dict(self, state_dict: dict) -> None:
|
|
self.step.load_state_dict(state_dict["step"])
|
|
self.zero_grad.load_state_dict(state_dict["zero_grad"])
|
|
|
|
|
|
@dataclass
|
|
class OptimizationProgress(BaseProgress):
|
|
"""
|
|
Track optimization progress.
|
|
|
|
Args:
|
|
optimizer: Tracks optimizer progress.
|
|
optimizer_idx: The index of the current optimizer.
|
|
"""
|
|
|
|
# TODO: support for multiple optimizers
|
|
optimizer: OptimizerProgress = field(default_factory=OptimizerProgress)
|
|
optimizer_idx: int = 0
|
|
|
|
@property
|
|
def optimizer_steps(self) -> int:
|
|
return self.optimizer.step.total.completed
|
|
|
|
def reset_on_epoch(self) -> None:
|
|
self.optimizer.reset_on_epoch()
|
|
self.optimizer_idx = 0
|
|
|
|
def load_state_dict(self, state_dict: dict) -> None:
|
|
self.optimizer.load_state_dict(state_dict["optimizer"])
|
|
self.optimizer_idx = state_dict["optimizer_idx"]
|