lightning/pytorch_lightning/trainer/progress.py

201 lines
6.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, dataclass, field
from typing import Optional
@dataclass
class BaseProgress:
def state_dict(self) -> dict:
return asdict(self)
def load_state_dict(self, state_dict: dict) -> None:
self.__dict__.update(state_dict)
@classmethod
def from_state_dict(cls, state_dict: dict) -> "BaseProgress":
obj = cls()
obj.load_state_dict(state_dict)
return obj
@dataclass
class Tracker(BaseProgress):
"""
Track an event's progress.
Args:
ready: Intended to track the number of events ready to start.
started: Intended to be incremented after the event is started (e.g. after ``on_*_start`` runs).
processed: Intended to be incremented after the event is processed.
completed: Intended to be incremented after the event completes (e.g. after ``on_*_end`` runs).
Attributes set to ``None`` are treated as unused and are restricted.
"""
ready: Optional[int] = 0
started: Optional[int] = 0
processed: Optional[int] = 0
completed: Optional[int] = 0
def reset(self) -> None:
if self.ready is not None:
self.ready = 0
if self.started is not None:
self.started = 0
if self.processed is not None:
self.processed = 0
if self.completed is not None:
self.completed = 0
def __setattr__(self, key: str, value: int) -> None:
if getattr(self, key, 0) is None:
raise AttributeError(f"The '{key}' attribute is meant to be unused")
return super().__setattr__(key, value)
def __repr__(self) -> str:
# hide `None` fields
args = [f"{k}={v}" for k, v in self.__dict__.items() if v is not None]
return f"{self.__class__.__name__}({', '.join(args)})"
def reset_on_restart(self) -> None:
"""Reset the progress on restart"""
value = self.completed if self.processed is None else self.processed
if self.ready is not None:
self.ready = value
if self.started is not None:
self.started = value
if self.processed is not None:
self.processed = value
if self.completed is not None:
self.completed = value
@dataclass
class Progress(BaseProgress):
"""
Track aggregated and current progress.
Args:
total: Intended to track the total progress of an event
current: Intended to track the current progress of an event
"""
total: Tracker = field(default_factory=Tracker)
current: Tracker = field(default_factory=Tracker)
def increment_ready(self) -> None:
self.total.ready += 1
self.current.ready += 1
def increment_started(self) -> None:
self.total.started += 1
self.current.started += 1
def increment_processed(self) -> None:
self.total.processed += 1
self.current.processed += 1
def increment_completed(self) -> None:
self.total.completed += 1
self.current.completed += 1
@classmethod
def from_defaults(cls, **kwargs: Optional[int]) -> "Progress":
return cls(total=Tracker(**kwargs), current=Tracker(**kwargs))
def load_state_dict(self, state_dict: dict) -> None:
self.total.load_state_dict(state_dict["total"])
self.current.load_state_dict(state_dict["current"])
@dataclass
class DataLoaderProgress(Progress):
"""
Tracks the dataloader progress
These counters are local to a trainer rank. By default, they are not globally synced across all ranks.
Args:
total: Tracks the total dataloader progress
current: Tracks the current dataloader progress
"""
total: Tracker = field(default_factory=lambda: Tracker(started=None, processed=None))
current: Tracker = field(default_factory=lambda: Tracker(started=None, processed=None))
@dataclass
class SchedulerProgress(Progress):
"""
Tracks the scheduler progress
These counters are local to a trainer rank. By default, they are not globally synced across all ranks.
Args:
total: Tracks the total scheduler progress
current: Tracks the current scheduler progress
"""
total: Tracker = field(default_factory=lambda: Tracker(started=None, processed=None))
current: Tracker = field(default_factory=lambda: Tracker(started=None, processed=None))
@dataclass
class OptimizerProgress(BaseProgress):
"""
Track optimizer progress.
Args:
step: Tracks ``optimizer.step`` calls.
zero_grad: Tracks ``optimizer.zero_grad`` calls.
"""
step: Progress = field(default_factory=lambda: Progress.from_defaults(started=None, processed=None))
zero_grad: Progress = field(default_factory=lambda: Progress.from_defaults(processed=None))
def reset_on_epoch(self) -> None:
self.step.current.reset()
self.zero_grad.current.reset()
def load_state_dict(self, state_dict: dict) -> None:
self.step.load_state_dict(state_dict["step"])
self.zero_grad.load_state_dict(state_dict["zero_grad"])
@dataclass
class OptimizationProgress(BaseProgress):
"""
Track optimization progress.
Args:
optimizer: Tracks optimizer progress.
optimizer_idx: The index of the current optimizer.
"""
# TODO: support for multiple optimizers
optimizer: OptimizerProgress = field(default_factory=OptimizerProgress)
optimizer_idx: int = 0
@property
def optimizer_steps(self) -> int:
return self.optimizer.step.total.completed
def reset_on_epoch(self) -> None:
self.optimizer.reset_on_epoch()
self.optimizer_idx = 0
def load_state_dict(self, state_dict: dict) -> None:
self.optimizer.load_state_dict(state_dict["optimizer"])
self.optimizer_idx = state_dict["optimizer_idx"]