lightning/pl_examples/test_examples.py

86 lines
2.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import platform
from unittest import mock
import pytest
import torch
from pl_examples import _DALI_AVAILABLE
ARGS_DEFAULT = (
"--trainer.default_root_dir %(tmpdir)s "
"--trainer.max_epochs 1 "
"--trainer.limit_train_batches 2 "
"--trainer.limit_val_batches 2 "
"--data.batch_size 32 "
)
ARGS_GPU = ARGS_DEFAULT + "--trainer.gpus 1 "
ARGS_DP = ARGS_DEFAULT + "--trainer.gpus 2 --trainer.accelerator dp "
ARGS_AMP = "--trainer.precision 16 "
@pytest.mark.parametrize(
"import_cli",
[
"pl_examples.basic_examples.simple_image_classifier",
"pl_examples.basic_examples.backbone_image_classifier",
"pl_examples.basic_examples.autoencoder",
],
)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.parametrize("cli_args", [ARGS_DP, ARGS_DP + ARGS_AMP])
def test_examples_dp(tmpdir, import_cli, cli_args):
module = importlib.import_module(import_cli)
# update the temp dir
cli_args = cli_args % {"tmpdir": tmpdir}
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
module.cli_main()
@pytest.mark.parametrize(
"import_cli",
[
"pl_examples.basic_examples.simple_image_classifier",
"pl_examples.basic_examples.backbone_image_classifier",
"pl_examples.basic_examples.autoencoder",
],
)
@pytest.mark.parametrize("cli_args", [ARGS_DEFAULT])
def test_examples_cpu(tmpdir, import_cli, cli_args):
module = importlib.import_module(import_cli)
# update the temp dir
cli_args = cli_args % {"tmpdir": tmpdir}
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
module.cli_main()
@pytest.mark.skipif(not _DALI_AVAILABLE, reason="Nvidia DALI required")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@pytest.mark.skipif(platform.system() != "Linux", reason="Only applies to Linux platform.")
@pytest.mark.parametrize("cli_args", [ARGS_GPU])
def test_examples_mnist_dali(tmpdir, cli_args):
from pl_examples.basic_examples.dali_image_classifier import cli_main
# update the temp dir
cli_args = cli_args % {"tmpdir": tmpdir}
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
cli_main()