86 lines
2.8 KiB
Python
86 lines
2.8 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import importlib
|
|
import platform
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from pl_examples import _DALI_AVAILABLE
|
|
|
|
ARGS_DEFAULT = (
|
|
"--trainer.default_root_dir %(tmpdir)s "
|
|
"--trainer.max_epochs 1 "
|
|
"--trainer.limit_train_batches 2 "
|
|
"--trainer.limit_val_batches 2 "
|
|
"--data.batch_size 32 "
|
|
)
|
|
ARGS_GPU = ARGS_DEFAULT + "--trainer.gpus 1 "
|
|
ARGS_DP = ARGS_DEFAULT + "--trainer.gpus 2 --trainer.accelerator dp "
|
|
ARGS_AMP = "--trainer.precision 16 "
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"import_cli",
|
|
[
|
|
"pl_examples.basic_examples.simple_image_classifier",
|
|
"pl_examples.basic_examples.backbone_image_classifier",
|
|
"pl_examples.basic_examples.autoencoder",
|
|
],
|
|
)
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
@pytest.mark.parametrize("cli_args", [ARGS_DP, ARGS_DP + ARGS_AMP])
|
|
def test_examples_dp(tmpdir, import_cli, cli_args):
|
|
|
|
module = importlib.import_module(import_cli)
|
|
# update the temp dir
|
|
cli_args = cli_args % {"tmpdir": tmpdir}
|
|
|
|
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
|
|
module.cli_main()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"import_cli",
|
|
[
|
|
"pl_examples.basic_examples.simple_image_classifier",
|
|
"pl_examples.basic_examples.backbone_image_classifier",
|
|
"pl_examples.basic_examples.autoencoder",
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("cli_args", [ARGS_DEFAULT])
|
|
def test_examples_cpu(tmpdir, import_cli, cli_args):
|
|
|
|
module = importlib.import_module(import_cli)
|
|
# update the temp dir
|
|
cli_args = cli_args % {"tmpdir": tmpdir}
|
|
|
|
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
|
|
module.cli_main()
|
|
|
|
|
|
@pytest.mark.skipif(not _DALI_AVAILABLE, reason="Nvidia DALI required")
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
@pytest.mark.skipif(platform.system() != "Linux", reason="Only applies to Linux platform.")
|
|
@pytest.mark.parametrize("cli_args", [ARGS_GPU])
|
|
def test_examples_mnist_dali(tmpdir, cli_args):
|
|
from pl_examples.basic_examples.dali_image_classifier import cli_main
|
|
|
|
# update the temp dir
|
|
cli_args = cli_args % {"tmpdir": tmpdir}
|
|
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
|
|
cli_main()
|