126 lines
3.6 KiB
Python
126 lines
3.6 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
import pytorch_lightning as pl
|
|
import tests.helpers.pipelines as tpipes
|
|
import tests.helpers.utils as tutils
|
|
from pytorch_lightning.callbacks import EarlyStopping
|
|
from pytorch_lightning.core import memory
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.datamodules import ClassifDataModule
|
|
from tests.helpers.runif import RunIf
|
|
from tests.helpers.simple_models import ClassificationModel
|
|
|
|
PRETEND_N_OF_GPUS = 16
|
|
|
|
|
|
class CustomClassificationModelDP(ClassificationModel):
|
|
|
|
def _step(self, batch, batch_idx):
|
|
x, y = batch
|
|
logits = self(x)
|
|
return {'logits': logits, 'y': y}
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
out = self._step(batch, batch_idx)
|
|
loss = F.cross_entropy(out['logits'], out['y'])
|
|
return loss
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
return self._step(batch, batch_idx)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
return self._step(batch, batch_idx)
|
|
|
|
def validation_step_end(self, outputs):
|
|
self.log('val_acc', self.valid_acc(outputs['logits'], outputs['y']))
|
|
|
|
def test_step_end(self, outputs):
|
|
self.log('test_acc', self.test_acc(outputs['logits'], outputs['y']))
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
def test_multi_gpu_early_stop_dp(tmpdir):
|
|
"""Make sure DDP works. with early stopping"""
|
|
tutils.set_random_master_port()
|
|
|
|
dm = ClassifDataModule()
|
|
model = CustomClassificationModelDP()
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[EarlyStopping(monitor='val_acc')],
|
|
max_epochs=50,
|
|
limit_train_batches=10,
|
|
limit_val_batches=10,
|
|
gpus=[0, 1],
|
|
accelerator='dp',
|
|
)
|
|
|
|
tpipes.run_model_test(trainer_options, model, dm)
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
def test_multi_gpu_model_dp(tmpdir):
|
|
tutils.set_random_master_port()
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=10,
|
|
limit_val_batches=10,
|
|
gpus=[0, 1],
|
|
accelerator='dp',
|
|
progress_bar_refresh_rate=0,
|
|
)
|
|
|
|
model = BoringModel()
|
|
|
|
tpipes.run_model_test(trainer_options, model)
|
|
|
|
# test memory helper functions
|
|
memory.get_memory_profile('min_max')
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
def test_dp_test(tmpdir):
|
|
tutils.set_random_master_port()
|
|
|
|
dm = ClassifDataModule()
|
|
model = CustomClassificationModelDP()
|
|
trainer = pl.Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
limit_train_batches=10,
|
|
limit_val_batches=10,
|
|
gpus=[0, 1],
|
|
accelerator='dp',
|
|
)
|
|
trainer.fit(model, datamodule=dm)
|
|
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
|
|
results = trainer.test(datamodule=dm)
|
|
assert 'test_acc' in results[0]
|
|
|
|
old_weights = model.layer_0.weight.clone().detach().cpu()
|
|
|
|
results = trainer.test(model, datamodule=dm)
|
|
assert 'test_acc' in results[0]
|
|
|
|
# make sure weights didn't change
|
|
new_weights = model.layer_0.weight.clone().detach().cpu()
|
|
|
|
assert torch.all(torch.eq(old_weights, new_weights))
|