lightning/tests
Nicki Skafte e0b856c105
[Metrics] Confusion matrix class interface (#4348)
* docs + precision + recall + f_beta + refactor

Co-authored-by: Teddy Koker <teddy.koker@gmail.com>

* rebase

Co-authored-by: Teddy Koker <teddy.koker@gmail.com>

* fixes

Co-authored-by: Teddy Koker <teddy.koker@gmail.com>

* added missing file

* docs

* docs

* extra import

* add confusion matrix

* add to docs

* add test

* pep8 + isort

* update tests

* move util function

* unify functional and class

* add to init

* remove old implementation

* update tests

* pep8

* add duplicate

* fix doctest

* Update pytorch_lightning/metrics/classification/confusion_matrix.py

Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>

* changelog

* bullet point args

* bullet docs

* bullet docs

Co-authored-by: ananyahjha93 <ananya@pytorchlightning.ai>
Co-authored-by: Teddy Koker <teddy.koker@gmail.com>
Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Roger Shieh <55400948+s-rog@users.noreply.github.com>
Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com>
2020-10-30 11:44:25 +01:00
..
backends
base add option to log momentum (#4384) 2020-10-28 21:56:58 +05:30
callbacks add option to log momentum (#4384) 2020-10-28 21:56:58 +05:30
checkpointing deprecate passing ModelCheckpoint instance to Trainer(checkpoint_callback=...) (#4336) 2020-10-30 04:47:37 +01:00
core
loggers feat(wandb): log in sync with Trainer step (#4405) 2020-10-29 01:07:06 +05:30
metrics [Metrics] Confusion matrix class interface (#4348) 2020-10-30 11:44:25 +01:00
models deprecate passing ModelCheckpoint instance to Trainer(checkpoint_callback=...) (#4336) 2020-10-30 04:47:37 +01:00
plugins Enable DDP Plugin to pass through args to LightningDistributedDataParallel (#4382) 2020-10-27 12:27:59 +00:00
trainer feature: Allow str arguments in Trainer.profiler (#3656) 2020-10-27 16:27:16 +05:30
tuner fix: `nb` is set total number of devices, when nb is -1. (#4209) 2020-10-29 10:50:37 +01:00
utilities get help from docstring (#4344) 2020-10-26 23:38:58 +05:30
README.md
__init__.py
collect_env_details.py
conftest.py
test_deprecated.py deprecate passing ModelCheckpoint instance to Trainer(checkpoint_callback=...) (#4336) 2020-10-30 04:47:37 +01:00
test_profiler.py

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

Install Open MPI or another MPI implementation. Learn how to install Open MPI on this page.

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash requirements/install_AMP.sh

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.
  3. Horovod with NCCL support: HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL pip install horovod

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.4 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.4 bash
docker image rm pytorch_lightning:devel-torch1.4