e0b856c105
* docs + precision + recall + f_beta + refactor Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * rebase Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * fixes Co-authored-by: Teddy Koker <teddy.koker@gmail.com> * added missing file * docs * docs * extra import * add confusion matrix * add to docs * add test * pep8 + isort * update tests * move util function * unify functional and class * add to init * remove old implementation * update tests * pep8 * add duplicate * fix doctest * Update pytorch_lightning/metrics/classification/confusion_matrix.py Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * changelog * bullet point args * bullet docs * bullet docs Co-authored-by: ananyahjha93 <ananya@pytorchlightning.ai> Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Roger Shieh <55400948+s-rog@users.noreply.github.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> |
||
---|---|---|
.. | ||
backends | ||
base | ||
callbacks | ||
checkpointing | ||
core | ||
loggers | ||
metrics | ||
models | ||
plugins | ||
trainer | ||
tuner | ||
utilities | ||
README.md | ||
__init__.py | ||
collect_env_details.py | ||
conftest.py | ||
test_deprecated.py | ||
test_profiler.py |
README.md
PyTorch-Lightning Tests
Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.
Running tests
The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.
To run all tests do the following:
Install Open MPI or another MPI implementation. Learn how to install Open MPI on this page.
git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning
# install AMP support
bash requirements/install_AMP.sh
# install dev deps
pip install -r requirements/devel.txt
# run tests
py.test -v
To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:
- At least 2 GPUs.
- NVIDIA-apex installed.
- Horovod with NCCL support:
HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL pip install horovod
Running Coverage
Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.
cd pytorch-lightning
# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v
# print coverage stats
coverage report -m
# exporting results
coverage xml
Building test image
You can build it on your own, note it takes lots of time, be prepared.
git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.4 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.4 .
To build other versions, select different Dockerfile.
docker image list
docker run --rm -it pytorch_lightning:devel-torch1.4 bash
docker image rm pytorch_lightning:devel-torch1.4