lightning/tests/models/test_hooks.py

677 lines
22 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest import mock
from unittest.mock import PropertyMock
import pytest
import torch
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from tests.helpers import BoringDataModule, BoringModel, RandomDataset
from tests.helpers.runif import RunIf
@pytest.mark.parametrize('max_steps', [1, 2, 3])
def test_on_before_zero_grad_called(tmpdir, max_steps):
class CurrentTestModel(BoringModel):
on_before_zero_grad_called = 0
def on_before_zero_grad(self, optimizer):
self.on_before_zero_grad_called += 1
model = CurrentTestModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=max_steps,
max_epochs=2,
)
assert 0 == model.on_before_zero_grad_called
trainer.fit(model)
assert max_steps == model.on_before_zero_grad_called
model.on_before_zero_grad_called = 0
trainer.test(model)
assert 0 == model.on_before_zero_grad_called
def test_training_epoch_end_metrics_collection(tmpdir):
""" Test that progress bar metrics also get collected at the end of an epoch. """
num_epochs = 3
class CurrentModel(BoringModel):
def training_step(self, *args, **kwargs):
output = super().training_step(*args, **kwargs)
self.log_dict({'step_metric': torch.tensor(-1), 'shared_metric': 100}, logger=False, prog_bar=True)
return output
def training_epoch_end(self, outputs):
epoch = self.current_epoch
# both scalar tensors and Python numbers are accepted
self.log_dict(
{
f'epoch_metric_{epoch}': torch.tensor(epoch),
'shared_metric': 111
},
logger=False,
prog_bar=True,
)
model = CurrentModel()
trainer = Trainer(
max_epochs=num_epochs,
default_root_dir=tmpdir,
overfit_batches=2,
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
metrics = trainer.progress_bar_dict
# metrics added in training step should be unchanged by epoch end method
assert metrics['step_metric'] == -1
# a metric shared in both methods gets overwritten by epoch_end
assert metrics['shared_metric'] == 111
# metrics are kept after each epoch
for i in range(num_epochs):
assert metrics[f'epoch_metric_{i}'] == i
def test_training_epoch_end_metrics_collection_on_override(tmpdir):
""" Test that batch end metrics are collected when training_epoch_end is overridden at the end of an epoch. """
class OverriddenModel(BoringModel):
def __init__(self):
super().__init__()
self.len_outputs = 0
def on_train_epoch_start(self):
self.num_train_batches = 0
def training_epoch_end(self, outputs):
self.len_outputs = len(outputs)
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.num_train_batches += 1
class NotOverriddenModel(BoringModel):
def on_train_epoch_start(self):
self.num_train_batches = 0
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.num_train_batches += 1
overridden_model = OverriddenModel()
not_overridden_model = NotOverriddenModel()
not_overridden_model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
overfit_batches=2,
)
trainer.fit(overridden_model)
assert overridden_model.len_outputs == overridden_model.num_train_batches
@RunIf(min_gpus=1)
@mock.patch("pytorch_lightning.accelerators.accelerator.Accelerator.lightning_module", new_callable=PropertyMock)
def test_apply_batch_transfer_handler(model_getter_mock):
expected_device = torch.device('cuda', 0)
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
self.targets = data[1]
class CurrentTestModel(BoringModel):
rank = 0
transfer_batch_to_device_hook_rank = None
on_before_batch_transfer_hook_rank = None
on_after_batch_transfer_hook_rank = None
def on_before_batch_transfer(self, batch, dataloader_idx):
assert dataloader_idx is None
self.on_before_batch_transfer_hook_rank = self.rank
self.rank += 1
batch.samples += 1
return batch
def on_after_batch_transfer(self, batch, dataloader_idx):
assert dataloader_idx is None
assert batch.samples.device == batch.targets.device == expected_device
self.on_after_batch_transfer_hook_rank = self.rank
self.rank += 1
batch.targets *= 2
return batch
def transfer_batch_to_device(self, batch, device, dataloader_idx):
assert dataloader_idx is None
self.transfer_batch_to_device_hook_rank = self.rank
self.rank += 1
batch.samples = batch.samples.to(device)
batch.targets = batch.targets.to(device)
return batch
model = CurrentTestModel()
batch = CustomBatch((torch.zeros(5, 32), torch.ones(5, 1, dtype=torch.long)))
trainer = Trainer(gpus=1)
# running .fit() would require us to implement custom data loaders, we mock the model reference instead
model_getter_mock.return_value = model
batch_gpu = trainer.accelerator.batch_to_device(batch, expected_device)
assert model.on_before_batch_transfer_hook_rank == 0
assert model.transfer_batch_to_device_hook_rank == 1
assert model.on_after_batch_transfer_hook_rank == 2
assert batch_gpu.samples.device == batch_gpu.targets.device == expected_device
assert torch.allclose(batch_gpu.samples.cpu(), torch.ones(5, 32))
assert torch.allclose(batch_gpu.targets.cpu(), torch.ones(5, 1, dtype=torch.long) * 2)
@RunIf(min_gpus=2, special=True)
def test_transfer_batch_hook_ddp(tmpdir):
"""
Test custom data are properly moved to the right device using ddp
"""
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
def to(self, device, **kwargs):
self.samples = self.samples.to(device, **kwargs)
return self
def collate_fn(batch):
return CustomBatch(batch)
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
assert batch.samples.device == self.device
assert isinstance(batch_idx, int)
def train_dataloader(self):
return torch.utils.data.DataLoader(RandomDataset(32, 64), collate_fn=collate_fn)
model = TestModel()
model.validation_step = None
model.training_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=0,
max_epochs=1,
weights_summary=None,
accelerator="ddp",
gpus=2,
)
trainer.fit(model)
@pytest.mark.parametrize('max_epochs,batch_idx_', [(2, 5), (3, 8), (4, 12)])
def test_on_train_batch_start_hook(max_epochs, batch_idx_):
class CurrentModel(BoringModel):
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
if batch_idx == batch_idx_:
return -1
model = CurrentModel()
trainer = Trainer(max_epochs=max_epochs)
trainer.fit(model)
if batch_idx_ > len(model.val_dataloader()) - 1:
assert trainer.train_loop.batch_idx == len(model.val_dataloader()) - 1
assert trainer.global_step == len(model.val_dataloader()) * max_epochs
else:
assert trainer.train_loop.batch_idx == batch_idx_
assert trainer.global_step == (batch_idx_ + 1) * max_epochs
def test_trainer_model_hook_system(tmpdir):
"""Test the LightningModule hook system."""
class HookedModel(BoringModel):
def __init__(self):
super().__init__()
self.called = []
def on_after_backward(self):
self.called.append("on_after_backward")
super().on_after_backward()
def on_before_zero_grad(self, *args, **kwargs):
self.called.append("on_before_zero_grad")
super().on_before_zero_grad(*args, **kwargs)
def on_epoch_start(self):
self.called.append("on_epoch_start")
super().on_epoch_start()
def on_epoch_end(self):
self.called.append("on_epoch_end")
super().on_epoch_end()
def on_fit_start(self):
self.called.append("on_fit_start")
super().on_fit_start()
def on_fit_end(self):
self.called.append("on_fit_end")
super().on_fit_end()
def on_hpc_load(self, *args, **kwargs):
self.called.append("on_hpc_load")
super().on_hpc_load(*args, **kwargs)
def on_hpc_save(self, *args, **kwargs):
self.called.append("on_hpc_save")
super().on_hpc_save(*args, **kwargs)
def on_load_checkpoint(self, *args, **kwargs):
self.called.append("on_load_checkpoint")
super().on_load_checkpoint(*args, **kwargs)
def on_save_checkpoint(self, *args, **kwargs):
self.called.append("on_save_checkpoint")
super().on_save_checkpoint(*args, **kwargs)
def on_pretrain_routine_start(self):
self.called.append("on_pretrain_routine_start")
super().on_pretrain_routine_start()
def on_pretrain_routine_end(self):
self.called.append("on_pretrain_routine_end")
super().on_pretrain_routine_end()
def on_train_start(self):
self.called.append("on_train_start")
super().on_train_start()
def on_train_end(self):
self.called.append("on_train_end")
super().on_train_end()
def on_before_batch_transfer(self, *args, **kwargs):
self.called.append("on_before_batch_transfer")
return super().on_before_batch_transfer(*args, **kwargs)
def transfer_batch_to_device(self, *args, **kwargs):
self.called.append("transfer_batch_to_device")
return super().transfer_batch_to_device(*args, **kwargs)
def on_after_batch_transfer(self, *args, **kwargs):
self.called.append("on_after_batch_transfer")
return super().on_after_batch_transfer(*args, **kwargs)
def on_train_batch_start(self, *args, **kwargs):
self.called.append("on_train_batch_start")
super().on_train_batch_start(*args, **kwargs)
def on_train_batch_end(self, *args, **kwargs):
self.called.append("on_train_batch_end")
super().on_train_batch_end(*args, **kwargs)
def on_train_epoch_start(self):
self.called.append("on_train_epoch_start")
super().on_train_epoch_start()
def on_train_epoch_end(self):
self.called.append("on_train_epoch_end")
super().on_train_epoch_end()
def on_validation_start(self):
self.called.append("on_validation_start")
super().on_validation_start()
def on_validation_end(self):
self.called.append("on_validation_end")
super().on_validation_end()
def on_validation_batch_start(self, *args, **kwargs):
self.called.append("on_validation_batch_start")
super().on_validation_batch_start(*args, **kwargs)
def on_validation_batch_end(self, *args, **kwargs):
self.called.append("on_validation_batch_end")
super().on_validation_batch_end(*args, **kwargs)
def on_validation_epoch_start(self):
self.called.append("on_validation_epoch_start")
super().on_validation_epoch_start()
def on_validation_epoch_end(self, *args, **kwargs):
self.called.append("on_validation_epoch_end")
super().on_validation_epoch_end(*args, **kwargs)
def on_test_start(self):
self.called.append("on_test_start")
super().on_test_start()
def on_test_batch_start(self, *args, **kwargs):
self.called.append("on_test_batch_start")
super().on_test_batch_start(*args, **kwargs)
def on_test_batch_end(self, *args, **kwargs):
self.called.append("on_test_batch_end")
super().on_test_batch_end(*args, **kwargs)
def on_test_epoch_start(self):
self.called.append("on_test_epoch_start")
super().on_test_epoch_start()
def on_test_epoch_end(self, *args, **kwargs):
self.called.append("on_test_epoch_end")
super().on_test_epoch_end(*args, **kwargs)
def on_validation_model_eval(self):
self.called.append("on_validation_model_eval")
super().on_validation_model_eval()
def on_validation_model_train(self):
self.called.append("on_validation_model_train")
super().on_validation_model_train()
def on_test_model_eval(self):
self.called.append("on_test_model_eval")
super().on_test_model_eval()
def on_test_model_train(self):
self.called.append("on_test_model_train")
super().on_test_model_train()
def on_test_end(self):
self.called.append("on_test_end")
super().on_test_end()
def setup(self, stage=None):
self.called.append(f"setup_{stage}")
super().setup(stage=stage)
def teardown(self, stage=None):
self.called.append(f"teardown_{stage}")
super().teardown(stage)
model = HookedModel()
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=1,
limit_train_batches=2,
limit_test_batches=1,
progress_bar_refresh_rate=0,
weights_summary=None,
)
assert model.called == []
trainer.fit(model)
expected = [
'setup_fit',
'on_fit_start',
'on_pretrain_routine_start',
'on_pretrain_routine_end',
'on_validation_model_eval',
'on_validation_start',
'on_epoch_start',
'on_validation_epoch_start',
'on_validation_batch_start',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'on_validation_batch_end',
'on_validation_epoch_end',
'on_epoch_end',
'on_validation_end',
'on_validation_model_train',
'on_train_start',
'on_epoch_start',
'on_train_epoch_start',
'on_train_batch_start',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'on_before_zero_grad',
'on_after_backward',
'on_train_batch_end',
'on_train_batch_start',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'on_before_zero_grad',
'on_after_backward',
'on_train_batch_end',
'on_train_epoch_end',
'on_epoch_end',
'on_validation_model_eval',
'on_validation_start',
'on_epoch_start',
'on_validation_epoch_start',
'on_validation_batch_start',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'on_validation_batch_end',
'on_validation_epoch_end',
'on_epoch_end',
'on_save_checkpoint',
'on_validation_end',
'on_validation_model_train',
'on_train_end',
'on_fit_end',
'teardown_fit',
]
assert model.called == expected
model = HookedModel()
trainer.validate(model, verbose=False)
expected = [
'setup_validate',
'on_validation_model_eval',
'on_validation_start',
'on_epoch_start',
'on_validation_epoch_start',
'on_validation_batch_start',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'on_validation_batch_end',
'on_validation_epoch_end',
'on_epoch_end',
'on_validation_end',
'on_validation_model_train',
'teardown_validate',
]
assert model.called == expected
model = HookedModel()
trainer.test(model, verbose=False)
expected = [
'setup_test',
'on_test_model_eval',
'on_test_start',
'on_epoch_start',
'on_test_epoch_start',
'on_test_batch_start',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'on_test_batch_end',
'on_test_epoch_end',
'on_epoch_end',
'on_test_end',
'on_test_model_train',
'teardown_test',
]
assert model.called == expected
def test_hooks_with_different_argument_names(tmpdir):
"""
Test that argument names can be anything in the hooks
"""
class CustomBoringModel(BoringModel):
def assert_args(self, x, batch_nb):
assert isinstance(x, torch.Tensor)
assert x.size() == (1, 32)
assert isinstance(batch_nb, int)
def training_step(self, x1, batch_nb1):
self.assert_args(x1, batch_nb1)
return super().training_step(x1, batch_nb1)
def validation_step(self, x2, batch_nb2):
self.assert_args(x2, batch_nb2)
return super().validation_step(x2, batch_nb2)
def test_step(self, x3, batch_nb3, dl_idx3):
self.assert_args(x3, batch_nb3)
assert isinstance(dl_idx3, int)
return super().test_step(x3, batch_nb3)
def predict(self, x4, batch_nb4, dl_idx4):
self.assert_args(x4, batch_nb4)
assert isinstance(dl_idx4, int)
return super().predict(x4, batch_nb4, dl_idx4)
def test_dataloader(self):
return [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))]
def predict_dataloader(self):
return [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))]
model = CustomBoringModel()
model.test_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=5,
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
trainer.test(ckpt_path=None)
preds = trainer.predict(model)
assert len(preds) == 2
assert all(len(x) == 5 for x in preds)
def test_trainer_datamodule_hook_system(tmpdir):
"""Test the LightningDataModule hook system."""
class HookedDataModule(BoringDataModule):
def __init__(self):
super().__init__()
self.called = []
def prepare_data(self):
self.called.append("prepare_data")
super().prepare_data()
def setup(self, stage=None):
self.called.append(f"setup_{stage}")
super().setup(stage=stage)
def teardown(self, stage=None):
self.called.append(f"teardown_{stage}")
super().teardown(stage=stage)
def train_dataloader(self):
self.called.append("train_dataloader")
return super().train_dataloader()
def test_dataloader(self):
self.called.append("test_dataloader")
return super().test_dataloader()
def val_dataloader(self):
self.called.append("val_dataloader")
return super().val_dataloader()
def predict_dataloader(self):
self.called.append("predict_dataloader")
def transfer_batch_to_device(self, *args, **kwargs):
self.called.append("transfer_batch_to_device")
return super().transfer_batch_to_device(*args, **kwargs)
def on_before_batch_transfer(self, *args, **kwargs):
self.called.append("on_before_batch_transfer")
return super().on_before_batch_transfer(*args, **kwargs)
def on_after_batch_transfer(self, *args, **kwargs):
self.called.append("on_after_batch_transfer")
return super().on_after_batch_transfer(*args, **kwargs)
model = BoringModel()
dm = HookedDataModule()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=1,
limit_train_batches=2,
limit_test_batches=1,
progress_bar_refresh_rate=0,
weights_summary=None,
reload_dataloaders_every_epoch=True,
)
trainer.fit(model, datamodule=dm)
expected = [
'prepare_data', 'setup_fit', 'val_dataloader', 'on_before_batch_transfer', 'transfer_batch_to_device',
'on_after_batch_transfer', 'train_dataloader', 'on_before_batch_transfer', 'transfer_batch_to_device',
'on_after_batch_transfer', 'on_before_batch_transfer', 'transfer_batch_to_device', 'on_after_batch_transfer',
'val_dataloader', 'on_before_batch_transfer', 'transfer_batch_to_device', 'on_after_batch_transfer',
'teardown_fit'
]
assert dm.called == expected
dm = HookedDataModule()
trainer.validate(model, datamodule=dm, verbose=False)
expected = [
'prepare_data', 'setup_validate', 'val_dataloader', 'on_before_batch_transfer', 'transfer_batch_to_device',
'on_after_batch_transfer', 'teardown_validate'
]
assert dm.called == expected
dm = HookedDataModule()
trainer.test(model, datamodule=dm, verbose=False)
expected = [
'prepare_data', 'setup_test', 'test_dataloader', 'on_before_batch_transfer', 'transfer_batch_to_device',
'on_after_batch_transfer', 'teardown_test'
]
assert dm.called == expected