741 lines
22 KiB
ReStructuredText
741 lines
22 KiB
ReStructuredText
.. testsetup:: *
|
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.core.datamodule import LightningDataModule
|
|
from pytorch_lightning.trainer.trainer import Trainer
|
|
import os
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data import DataLoader
|
|
import pytorch_lightning as pl
|
|
from torch.utils.data import random_split
|
|
|
|
.. _new_project:
|
|
|
|
####################
|
|
Lightning in 2 steps
|
|
####################
|
|
|
|
**In this guide we'll show you how to organize your PyTorch code into Lightning in 2 steps.**
|
|
|
|
Organizing your code with PyTorch Lightning makes your code:
|
|
|
|
* Keep all the flexibility (this is all pure PyTorch), but removes a ton of boilerplate
|
|
* More readable by decoupling the research code from the engineering
|
|
* Easier to reproduce
|
|
* Less error prone by automating most of the training loop and tricky engineering
|
|
* Scalable to any hardware without changing your model
|
|
|
|
----------
|
|
|
|
Here's a 3 minute conversion guide for PyTorch projects:
|
|
|
|
.. raw:: html
|
|
|
|
<video width="100%" max-width="800px" controls autoplay muted playsinline
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pl_docs_animation_final.m4v"></video>
|
|
|
|
----------
|
|
|
|
*********************************
|
|
Step 0: Install PyTorch Lightning
|
|
*********************************
|
|
|
|
|
|
You can install using `pip <https://pypi.org/project/pytorch-lightning/>`_
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install pytorch-lightning
|
|
|
|
Or with `conda <https://anaconda.org/conda-forge/pytorch-lightning>`_ (see how to install conda `here <https://docs.conda.io/projects/conda/en/latest/user-guide/install/>`_):
|
|
|
|
.. code-block:: bash
|
|
|
|
conda install pytorch-lightning -c conda-forge
|
|
|
|
You could also use conda environments
|
|
|
|
.. code-block:: bash
|
|
|
|
conda activate my_env
|
|
pip install pytorch-lightning
|
|
|
|
----------
|
|
|
|
Import the following:
|
|
|
|
.. code-block:: python
|
|
|
|
import os
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
from torchvision.datasets import MNIST
|
|
from torchvision import transforms
|
|
from torch.utils.data import DataLoader
|
|
import pytorch_lightning as pl
|
|
from torch.utils.data import random_split
|
|
|
|
******************************
|
|
Step 1: Define LightningModule
|
|
******************************
|
|
|
|
.. code-block::
|
|
|
|
class LitAutoEncoder(pl.LightningModule):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.encoder = nn.Sequential(
|
|
nn.Linear(28*28, 64),
|
|
nn.ReLU(),
|
|
nn.Linear(64, 3)
|
|
)
|
|
self.decoder = nn.Sequential(
|
|
nn.Linear(3, 64),
|
|
nn.ReLU(),
|
|
nn.Linear(64, 28*28)
|
|
)
|
|
|
|
def forward(self, x):
|
|
# in lightning, forward defines the prediction/inference actions
|
|
embedding = self.encoder(x)
|
|
return embedding
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
# training_step defined the train loop. It is independent of forward
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
z = self.encoder(x)
|
|
x_hat = self.decoder(z)
|
|
loss = F.mse_loss(x_hat, x)
|
|
# Logging to TensorBoard by default
|
|
self.log('train_loss', loss)
|
|
return loss
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
|
return optimizer
|
|
|
|
A :class:`~pytorch_lightning.core.LightningModule` defines a *system* such as:
|
|
|
|
- `Autoencoder <https://github.com/PyTorchLightning/pytorch-lightning-bolts/blob/master/pl_bolts/models/autoencoders/basic_ae/basic_ae_module.py>`_
|
|
- `BERT <https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=yr7eaxkF-djf>`_
|
|
- `DQN <https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=IAlT0-75T_Kv>`_
|
|
- `GAN <https://github.com/PyTorchLightning/pytorch-lightning-bolts/blob/master/pl_bolts/models/gans/basic/basic_gan_module.py>`_
|
|
- `Image classifier <https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=gEulmrbxwaYL>`_
|
|
- Seq2seq
|
|
- `SimCLR <https://github.com/PyTorchLightning/pytorch-lightning-bolts/blob/master/pl_bolts/models/self_supervised/simclr/simclr_module.py>`_
|
|
- `VAE <https://github.com/PyTorchLightning/pytorch-lightning-bolts/blob/master/pl_bolts/models/autoencoders/basic_vae/basic_vae_module.py>`_
|
|
|
|
It is a :class:`torch.nn.Module` that groups all research code into a single file to make it self-contained:
|
|
|
|
- The Train loop
|
|
- The Validation loop
|
|
- The Test loop
|
|
- The Model + system architecture
|
|
- The Optimizer
|
|
|
|
You can customize any part of training (such as the backward pass) by overriding any
|
|
of the 20+ hooks found in :ref:`hooks`
|
|
|
|
.. code-block:: python
|
|
|
|
class LitAutoEncoder(pl.LightningModule):
|
|
|
|
def backward(self, loss, optimizer, optimizer_idx):
|
|
loss.backward()
|
|
|
|
In Lightning, training_step defines the train loop and is independent of forward. Use forward to define
|
|
what happens during inference/predictions
|
|
|
|
.. code-block:: python
|
|
|
|
def forward(...):
|
|
# how you want your model to do inference/predictions
|
|
|
|
def training_step(...):
|
|
# the train loop INDEPENDENT of forward.
|
|
|
|
More details in :ref:`lightning_module` docs.
|
|
|
|
----------
|
|
|
|
**********************************
|
|
Step 2: Fit with Lightning Trainer
|
|
**********************************
|
|
|
|
First, define the data however you want. Lightning just needs a :class:`~torch.utils.data.DataLoader` for the train/val/test splits.
|
|
|
|
.. code-block:: python
|
|
|
|
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
|
|
train_loader = DataLoader(dataset)
|
|
|
|
Next, init the :class:`~pytorch_lightning.core.LightningModule` and the PyTorch Lightning :class:`~pytorch_lightning.trainer.Trainer`,
|
|
then call fit with both the data and model.
|
|
|
|
.. code-block:: python
|
|
|
|
# init model
|
|
autoencoder = LitAutoEncoder()
|
|
|
|
# most basic trainer, uses good defaults (auto-tensorboard, checkpoints, logs, and more)
|
|
# trainer = pl.Trainer(gpus=8) (if you have GPUs)
|
|
trainer = pl.Trainer()
|
|
trainer.fit(autoencoder, train_loader)
|
|
|
|
The :class:`~pytorch_lightning.trainer.Trainer` automates:
|
|
|
|
* Epoch and batch iteration
|
|
* Calling of optimizer.step(), backward, zero_grad()
|
|
* Calling of .eval(), enabling/disabling grads
|
|
* :ref:`weights_loading`
|
|
* Tensorboard (see :ref:`loggers` options)
|
|
* :ref:`multi_gpu` support
|
|
* :ref:`tpu`
|
|
* :ref:`amp` support
|
|
|
|
-----------
|
|
|
|
*****************
|
|
Predict or Deploy
|
|
*****************
|
|
When you're done training, you have 3 options to use your LightningModule for predictions.
|
|
|
|
Option 1: Sub-models
|
|
====================
|
|
Pull out any model inside your system for predictions.
|
|
|
|
.. code-block:: python
|
|
|
|
# ----------------------------------
|
|
# to use as embedding extractor
|
|
# ----------------------------------
|
|
autoencoder = LitAutoEncoder.load_from_checkpoint('path/to/checkpoint_file.ckpt')
|
|
encoder_model = autoencoder.encoder
|
|
encoder_model.eval()
|
|
|
|
# ----------------------------------
|
|
# to use as image generator
|
|
# ----------------------------------
|
|
decoder_model = autoencoder.decoder
|
|
decoder_model.eval()
|
|
|
|
Option 2: Forward
|
|
=================
|
|
You can also add a forward method to do predictions however you want.
|
|
|
|
.. code-block:: python
|
|
|
|
# ----------------------------------
|
|
# using the AE to extract embeddings
|
|
# ----------------------------------
|
|
class LitAutoEncoder(pl.LightningModule):
|
|
def forward(self, x):
|
|
embedding = self.encoder(x)
|
|
return embedding
|
|
|
|
autoencoder = LitAutoencoder()
|
|
autoencoder = autoencoder(torch.rand(1, 28 * 28))
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
# ----------------------------------
|
|
# or using the AE to generate images
|
|
# ----------------------------------
|
|
class LitAutoEncoder(pl.LightningModule):
|
|
def forward(self):
|
|
z = torch.rand(1, 3)
|
|
image = self.decoder(z)
|
|
image = image.view(1, 1, 28, 28)
|
|
return image
|
|
|
|
autoencoder = LitAutoencoder()
|
|
image_sample = autoencoder(()
|
|
|
|
Option 3: Production
|
|
====================
|
|
For production systems onnx or torchscript are much faster. Make sure you have added
|
|
a forward method or trace only the sub-models you need.
|
|
|
|
.. code-block:: python
|
|
|
|
# ----------------------------------
|
|
# torchscript
|
|
# ----------------------------------
|
|
autoencoder = LitAutoEncoder()
|
|
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
|
|
os.path.isfile("model.pt")
|
|
|
|
.. code-block:: python
|
|
|
|
# ----------------------------------
|
|
# onnx
|
|
# ----------------------------------
|
|
with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as tmpfile:
|
|
autoencoder = LitAutoEncoder()
|
|
input_sample = torch.randn((1, 28 * 28))
|
|
autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
|
|
os.path.isfile(tmpfile.name)
|
|
|
|
--------------------
|
|
|
|
********************************
|
|
Manual vs automatic optimization
|
|
********************************
|
|
|
|
Automatic optimization
|
|
======================
|
|
With Lightning you don't need to worry about when to enable/disable grads, do a backward pass, or update optimizers
|
|
as long as you return a loss with an attached graph from the `training_step`, Lightning will automate the optimization.
|
|
|
|
.. code-block:: python
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
loss = self.encoder(batch[0])
|
|
return loss
|
|
|
|
Manual optimization
|
|
===================
|
|
However, for certain research like GANs, reinforcement learning or something with multiple optimizers
|
|
or an inner loop, you can turn off automatic optimization and fully control the training loop yourself.
|
|
|
|
First, turn off automatic optimization:
|
|
|
|
.. code-block:: python
|
|
|
|
trainer = Trainer(automatic_optimization=False)
|
|
|
|
Now you own the train loop!
|
|
|
|
.. code-block:: python
|
|
|
|
def training_step(self, batch, batch_idx, opt_idx):
|
|
(opt_a, opt_b, opt_c) = self.optimizers()
|
|
|
|
loss_a = self.generator(batch[0])
|
|
|
|
# use this instead of loss.backward so we can automate half precision, etc...
|
|
self.manual_backward(loss_a, opt_a, retain_graph=True)
|
|
self.manual_backward(loss_a, opt_a)
|
|
opt_a.step()
|
|
opt_a.zero_grad()
|
|
|
|
loss_b = self.discriminator(batch[0])
|
|
self.manual_backward(loss_b, opt_b)
|
|
...
|
|
|
|
|
|
--------------------
|
|
|
|
********************
|
|
Using CPUs/GPUs/TPUs
|
|
********************
|
|
It's trivial to use CPUs, GPUs or TPUs in Lightning. There's **NO NEED** to change your code, simply change the :class:`~pytorch_lightning.trainer.Trainer` options.
|
|
|
|
.. code-block:: python
|
|
|
|
# train on CPU
|
|
trainer = pl.Trainer()
|
|
|
|
.. code-block:: python
|
|
|
|
# train on 8 CPUs
|
|
trainer = pl.Trainer(num_processes=8)
|
|
|
|
.. code-block:: python
|
|
|
|
# train on 1024 CPUs across 128 machines
|
|
trainer = pl.Trainer(
|
|
num_processes=8,
|
|
num_nodes=128
|
|
)
|
|
|
|
.. code-block:: python
|
|
|
|
# train on 1 GPU
|
|
trainer = pl.Trainer(gpus=1)
|
|
|
|
.. code-block:: python
|
|
|
|
# train on multiple GPUs across nodes (32 gpus here)
|
|
trainer = pl.Trainer(
|
|
gpus=4,
|
|
num_nodes=8
|
|
)
|
|
|
|
.. code-block:: python
|
|
|
|
# train on gpu 1, 3, 5 (3 gpus total)
|
|
trainer = pl.Trainer(gpus=[1, 3, 5])
|
|
|
|
.. code-block:: python
|
|
|
|
# Multi GPU with mixed precision
|
|
trainer = pl.Trainer(gpus=2, precision=16)
|
|
|
|
.. code-block:: python
|
|
|
|
# Train on TPUs
|
|
trainer = pl.Trainer(tpu_cores=8)
|
|
|
|
Without changing a SINGLE line of your code, you can now do the following with the above code:
|
|
|
|
.. code-block:: python
|
|
|
|
# train on TPUs using 16 bit precision
|
|
# using only half the training data and checking validation every quarter of a training epoch
|
|
trainer = pl.Trainer(
|
|
tpu_cores=8,
|
|
precision=16,
|
|
limit_train_batches=0.5,
|
|
val_check_interval=0.25
|
|
)
|
|
|
|
-----------
|
|
|
|
***********
|
|
Checkpoints
|
|
***********
|
|
Lightning automatically saves your model. Once you've trained, you can load the checkpoints as follows:
|
|
|
|
.. code-block:: python
|
|
|
|
model = LitModel.load_from_checkpoint(path)
|
|
|
|
The above checkpoint contains all the arguments needed to init the model and set the state dict.
|
|
If you prefer to do it manually, here's the equivalent
|
|
|
|
.. code-block:: python
|
|
|
|
# load the ckpt
|
|
ckpt = torch.load('path/to/checkpoint.ckpt')
|
|
|
|
# equivalent to the above
|
|
model = LitModel()
|
|
model.load_state_dict(ckpt['state_dict'])
|
|
|
|
---------
|
|
|
|
*********
|
|
Data flow
|
|
*********
|
|
Each loop (training, validation, test) has three hooks you can implement:
|
|
|
|
- x_step
|
|
- x_step_end
|
|
- x_epoch_end
|
|
|
|
To illustrate how data flows, we'll use the training loop (ie: x=training)
|
|
|
|
.. code-block:: python
|
|
|
|
outs = []
|
|
for batch in data:
|
|
out = training_step(batch)
|
|
outs.append(out)
|
|
training_epoch_end(outs)
|
|
|
|
The equivalent in Lightning is:
|
|
|
|
.. code-block:: python
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
prediction = ...
|
|
return prediction
|
|
|
|
def training_epoch_end(self, training_step_outputs):
|
|
for prediction in predictions:
|
|
# do something with these
|
|
|
|
In the event that you use DP or DDP2 distributed modes (ie: split a batch across GPUs),
|
|
use the x_step_end to manually aggregate (or don't implement it to let lightning auto-aggregate for you).
|
|
|
|
.. code-block:: python
|
|
|
|
for batch in data:
|
|
model_copies = copy_model_per_gpu(model, num_gpus)
|
|
batch_split = split_batch_per_gpu(batch, num_gpus)
|
|
|
|
gpu_outs = []
|
|
for model, batch_part in zip(model_copies, batch_split):
|
|
# LightningModule hook
|
|
gpu_out = model.training_step(batch_part)
|
|
gpu_outs.append(gpu_out)
|
|
|
|
# LightningModule hook
|
|
out = training_step_end(gpu_outs)
|
|
|
|
The lightning equivalent is:
|
|
|
|
.. code-block:: python
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
loss = ...
|
|
return loss
|
|
|
|
def training_step_end(self, losses):
|
|
gpu_0_loss = losses[0]
|
|
gpu_1_loss = losses[1]
|
|
return (gpu_0_loss + gpu_1_loss) * 1/2
|
|
|
|
.. tip:: The validation and test loops have the same structure.
|
|
|
|
-----------------
|
|
|
|
*****************
|
|
Logging
|
|
*****************
|
|
To log to Tensorboard, your favorite logger, and/or the progress bar, use the
|
|
:func:`~~pytorch_lightning.core.lightning.LightningModule.log` method which can be called from
|
|
any method in the LightningModule.
|
|
|
|
.. code-block:: python
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
self.log('my_metric', x)
|
|
|
|
The :func:`~~pytorch_lightning.core.lightning.LightningModule.log` method has a few options:
|
|
|
|
- on_step (logs the metric at that step in training)
|
|
- on_epoch (automatically accumulates and logs at the end of the epoch)
|
|
- prog_bar (logs to the progress bar)
|
|
- logger (logs to the logger like Tensorboard)
|
|
|
|
Depending on where log is called from, Lightning auto-determines the correct mode for you. But of course
|
|
you can override the default behavior by manually setting the flags
|
|
|
|
.. note:: Setting on_epoch=True will accumulate your logged values over the full training epoch.
|
|
|
|
.. code-block:: python
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
self.log('my_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
|
|
|
|
.. note::
|
|
The loss value shown in the progress bar is smoothed (averaged) over the last values,
|
|
so it differs from the actual loss returned in train/validation step.
|
|
|
|
You can also use any method of your logger directly:
|
|
|
|
.. code-block:: python
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
tensorboard = self.logger.experiment
|
|
tensorboard.any_summary_writer_method_you_want())
|
|
|
|
Once your training starts, you can view the logs by using your favorite logger or booting up the Tensorboard logs:
|
|
|
|
.. code-block:: bash
|
|
|
|
tensorboard --logdir ./lightning_logs
|
|
|
|
.. note::
|
|
Lightning automatically shows the loss value returned from ``training_step`` in the progress bar.
|
|
So, no need to explicitly log like this ``self.log('loss', loss, prog_bar=True)``.
|
|
|
|
Read more about :ref:`loggers`.
|
|
|
|
----------------
|
|
|
|
*****************
|
|
Optional features
|
|
*****************
|
|
|
|
Callbacks
|
|
=========
|
|
A callback is an arbitrary self-contained program that can be executed at arbitrary parts of the training loop.
|
|
|
|
Here's an example adding a not-so-fancy learning rate decay rule:
|
|
|
|
.. code-block:: python
|
|
|
|
class DecayLearningRate(pl.Callback)
|
|
|
|
def __init__(self):
|
|
self.old_lrs = []
|
|
|
|
def on_train_start(self, trainer, pl_module):
|
|
# track the initial learning rates
|
|
for opt_idx in optimizer in enumerate(trainer.optimizers):
|
|
group = []
|
|
for param_group in optimizer.param_groups:
|
|
group.append(param_group['lr'])
|
|
self.old_lrs.append(group)
|
|
|
|
def on_train_epoch_end(self, trainer, pl_module, outputs):
|
|
for opt_idx in optimizer in enumerate(trainer.optimizers):
|
|
old_lr_group = self.old_lrs[opt_idx]
|
|
new_lr_group = []
|
|
for p_idx, param_group in enumerate(optimizer.param_groups):
|
|
old_lr = old_lr_group[p_idx]
|
|
new_lr = old_lr * 0.98
|
|
new_lr_group.append(new_lr)
|
|
param_group['lr'] = new_lr
|
|
self.old_lrs[opt_idx] = new_lr_group
|
|
|
|
|
|
Things you can do with a callback:
|
|
|
|
- Send emails at some point in training
|
|
- Grow the model
|
|
- Update learning rates
|
|
- Visualize gradients
|
|
- ...
|
|
- You are only limited by your imagination
|
|
|
|
:ref:`Learn more about custom callbacks <callbacks>`.
|
|
|
|
|
|
LightningDataModules
|
|
====================
|
|
DataLoaders and data processing code tends to end up scattered around.
|
|
Make your data code reusable by organizing it into a :class:`~pytorch_lightning.core.datamodule.LightningDataModule`.
|
|
|
|
.. code-block:: python
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
|
|
def __init__(self, batch_size=32):
|
|
super().__init__()
|
|
self.batch_size = batch_size
|
|
|
|
# When doing distributed training, Datamodules have two optional arguments for
|
|
# granular control over download/prepare/splitting data:
|
|
|
|
# OPTIONAL, called only on 1 GPU/machine
|
|
def prepare_data(self):
|
|
MNIST(os.getcwd(), train=True, download=True)
|
|
MNIST(os.getcwd(), train=False, download=True)
|
|
|
|
# OPTIONAL, called for every GPU/machine (assigning state is OK)
|
|
def setup(self, stage):
|
|
# transforms
|
|
transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
])
|
|
# split dataset
|
|
if stage == 'fit':
|
|
mnist_train = MNIST(os.getcwd(), train=True, transform=transform)
|
|
self.mnist_train, self.mnist_val = random_split(mnist_train, [55000, 5000])
|
|
if stage == 'test':
|
|
self.mnist_test = MNIST(os.getcwd(), train=False, transform=transform)
|
|
|
|
# return the dataloader for each split
|
|
def train_dataloader(self):
|
|
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
|
return mnist_train
|
|
|
|
def val_dataloader(self):
|
|
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
|
return mnist_val
|
|
|
|
def test_dataloader(self):
|
|
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
return mnist_test
|
|
|
|
:class:`~pytorch_lightning.core.datamodule.LightningDataModule` is designed to enable sharing and reusing data splits
|
|
and transforms across different projects. It encapsulates all the steps needed to process data: downloading,
|
|
tokenizing, processing etc.
|
|
|
|
Now you can simply pass your :class:`~pytorch_lightning.core.datamodule.LightningDataModule` to
|
|
the :class:`~pytorch_lightning.trainer.Trainer`:
|
|
|
|
.. code-block::
|
|
|
|
# init model
|
|
model = LitModel()
|
|
|
|
# init data
|
|
dm = MNISTDataModule()
|
|
|
|
# train
|
|
trainer = pl.Trainer()
|
|
trainer.fit(model, dm)
|
|
|
|
# test
|
|
trainer.test(datamodule=dm)
|
|
|
|
DataModules are specifically useful for building models based on data. Read more on :ref:`datamodules`.
|
|
|
|
------
|
|
|
|
*********
|
|
Debugging
|
|
*********
|
|
Lightning has many tools for debugging. Here is an example of just a few of them:
|
|
|
|
.. code-block:: python
|
|
|
|
# use only 10 train batches and 3 val batches
|
|
trainer = pl.Trainer(limit_train_batches=10, limit_val_batches=3)
|
|
|
|
.. code-block:: python
|
|
|
|
# Automatically overfit the sane batch of your model for a sanity test
|
|
trainer = pl.Trainer(overfit_batches=1)
|
|
|
|
.. code-block:: python
|
|
|
|
# unit test all the code- hits every line of your code once to see if you have bugs,
|
|
# instead of waiting hours to crash on validation
|
|
trainer = pl.Trainer(fast_dev_run=True)
|
|
|
|
.. code-block:: python
|
|
|
|
# train only 20% of an epoch
|
|
trainer = pl. Trainer(limit_train_batches=0.2)
|
|
|
|
.. code-block:: python
|
|
|
|
# run validation every 25% of a training epoch
|
|
trainer = pl.Trainer(val_check_interval=0.25)
|
|
|
|
.. code-block:: python
|
|
|
|
# Profile your code to find speed/memory bottlenecks
|
|
Trainer(profiler=True)
|
|
|
|
---------------
|
|
|
|
***************************
|
|
Advanced Lightning Features
|
|
***************************
|
|
|
|
Once you define and train your first Lightning model, you might want to try other cool features like
|
|
|
|
- :ref:`Automatic early stopping <early_stopping>`
|
|
- :ref:`Automatic truncated-back-propagation-through-time <trainer:truncated_bptt_steps>`
|
|
- :ref:`Automatically scale your batch size <training_tricks:Auto scaling of batch size>`
|
|
- :ref:`Automatically find a good learning rate <lr_finder>`
|
|
- :ref:`Load checkpoints directly from S3 <weights_loading:Checkpoint Loading>`
|
|
- :ref:`Scale to massive compute clusters <slurm>`
|
|
- :ref:`Use multiple dataloaders per train/val/test loop <multiple_loaders>`
|
|
- :ref:`Use multiple optimizers to do reinforcement learning or even GANs <optimizers:Use multiple optimizers (like GANs)>`
|
|
|
|
Or read our :ref:`introduction_guide` to learn more!
|
|
|
|
-------------
|
|
|
|
**********
|
|
Community
|
|
**********
|
|
Our community of core maintainers and thousands of expert researchers is active on our
|
|
`Slack <https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A>`_
|
|
and `Forum <https://forums.pytorchlightning.ai/>`_. Drop by to hang out, ask Lightning questions or even discuss research!
|
|
|
|
Masterclass
|
|
===========
|
|
We also offer a Masterclass to teach you the advanced uses of Lightning.
|
|
|
|
.. image:: _images/general/PTL101_youtube_thumbnail.jpg
|
|
:width: 500
|
|
:align: center
|
|
:alt: Masterclass
|
|
:target: https://www.youtube.com/playlist?list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2
|