42 lines
1.4 KiB
Python
42 lines
1.4 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytest
|
|
import torch
|
|
from torch.nn import DataParallel
|
|
|
|
from pytorch_lightning.overrides.base import (
|
|
_LightningModuleWrapperBase,
|
|
_LightningPrecisionModuleWrapperBase,
|
|
unwrap_lightning_module,
|
|
)
|
|
from tests.helpers import BoringModel
|
|
|
|
|
|
@pytest.mark.parametrize("wrapper_class", [_LightningModuleWrapperBase, _LightningPrecisionModuleWrapperBase])
|
|
def test_wrapper_device_dtype(wrapper_class):
|
|
model = BoringModel()
|
|
wrapped_model = wrapper_class(model)
|
|
|
|
wrapped_model.to(dtype=torch.float16)
|
|
assert model.dtype == torch.float16
|
|
|
|
|
|
def test_unwrap_lightning_module():
|
|
model = BoringModel()
|
|
wrapped_model = _LightningPrecisionModuleWrapperBase(model)
|
|
wrapped_model = _LightningModuleWrapperBase(wrapped_model)
|
|
wrapped_model = DataParallel(wrapped_model)
|
|
|
|
assert unwrap_lightning_module(wrapped_model) == model
|