113 lines
4.2 KiB
Python
113 lines
4.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils.data import DataLoader, DistributedSampler
|
|
|
|
from pytorch_lightning import LightningModule, seed_everything, Trainer
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
class SyncBNModule(LightningModule):
|
|
def __init__(self, batch_size):
|
|
super().__init__()
|
|
self.batch_size = batch_size
|
|
self.bn_layer = nn.BatchNorm1d(1)
|
|
self.linear = nn.Linear(1, 10)
|
|
self.bn_outputs = []
|
|
|
|
def on_train_start(self) -> None:
|
|
assert isinstance(self.bn_layer, torch.nn.modules.batchnorm.SyncBatchNorm)
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
with torch.no_grad():
|
|
out_bn = self.bn_layer(batch)
|
|
self.bn_outputs.append(out_bn.detach())
|
|
out = self.linear(out_bn)
|
|
return out.sum()
|
|
|
|
def configure_optimizers(self):
|
|
return torch.optim.SGD(self.parameters(), lr=0.02)
|
|
|
|
def train_dataloader(self):
|
|
dataset = torch.arange(64, dtype=torch.float).view(-1, 1)
|
|
# we need to set a distributed sampler ourselves to force shuffle=False
|
|
sampler = DistributedSampler(
|
|
dataset, num_replicas=self.trainer.world_size, rank=self.trainer.global_rank, shuffle=False
|
|
)
|
|
return DataLoader(dataset, sampler=sampler, batch_size=self.batch_size)
|
|
|
|
|
|
@RunIf(min_gpus=2, standalone=True)
|
|
def test_sync_batchnorm_parity(tmpdir):
|
|
"""Test parity between 1) Training a synced batch-norm layer on 2 GPUs with batch size B per device 2) Training
|
|
a batch-norm layer on CPU with twice the batch size."""
|
|
seed_everything(3)
|
|
# 2 GPUS, batch size = 4 per GPU => total batch size = 8
|
|
model = SyncBNModule(batch_size=4)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
accelerator="gpu",
|
|
strategy="ddp",
|
|
devices=2,
|
|
max_steps=3,
|
|
sync_batchnorm=True,
|
|
num_sanity_val_steps=0,
|
|
replace_sampler_ddp=False,
|
|
deterministic=True,
|
|
benchmark=False,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# the strategy is responsible for tearing down the batchnorm wrappers
|
|
assert not isinstance(model.bn_layer, torch.nn.modules.batchnorm.SyncBatchNorm)
|
|
assert isinstance(model.bn_layer, torch.nn.modules.batchnorm._BatchNorm)
|
|
|
|
bn_outputs = torch.stack(model.bn_outputs) # 2 x 4 x 1 on each GPU
|
|
bn_outputs_multi_device = trainer.strategy.all_gather(bn_outputs).cpu() # 2 x 2 x 4 x 1
|
|
|
|
if trainer.global_rank == 0:
|
|
# pretend we are now training on a single GPU/process
|
|
# (we are reusing the rank 0 from the previous training)
|
|
|
|
# 1 GPU, batch size = 8 => total batch size = 8
|
|
bn_outputs_single_device = _train_single_process_sync_batchnorm(batch_size=8, num_steps=3)
|
|
|
|
gpu0_outputs = bn_outputs_multi_device[0] # 2 x 4 x 1
|
|
gpu1_outputs = bn_outputs_multi_device[1] # 2 x 4 x 1
|
|
slice0 = bn_outputs_single_device[:, 0::2]
|
|
slice1 = bn_outputs_single_device[:, 1::2]
|
|
|
|
assert torch.allclose(gpu0_outputs, slice0)
|
|
assert torch.allclose(gpu1_outputs, slice1)
|
|
|
|
|
|
def _train_single_process_sync_batchnorm(batch_size, num_steps):
|
|
seed_everything(3)
|
|
dataset = torch.arange(64, dtype=torch.float).view(-1, 1)
|
|
train_dataloader = DataLoader(dataset, batch_size=batch_size)
|
|
model = SyncBNModule(batch_size=batch_size)
|
|
optimizer = model.configure_optimizers()
|
|
model.train()
|
|
for batch_idx, batch in enumerate(train_dataloader):
|
|
optimizer.zero_grad()
|
|
loss = model.training_step(batch, batch)
|
|
loss.backward()
|
|
optimizer.step()
|
|
if batch_idx == num_steps - 1:
|
|
break
|
|
|
|
return torch.stack(model.bn_outputs) # num_steps x batch_size x 1
|