223 lines
7.6 KiB
Python
223 lines
7.6 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import time
|
|
from typing import Type
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import seed_everything, Trainer
|
|
from pytorch_lightning.strategies import DDPSpawnShardedStrategy
|
|
from tests.helpers.boring_model import BoringModel, RandomDataset
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
class SeedTrainLoaderModel(BoringModel):
|
|
"""Overrides training loader to ensure we enforce the same seed for all DDP processes."""
|
|
|
|
def train_dataloader(self):
|
|
seed_everything(42)
|
|
return torch.utils.data.DataLoader(RandomDataset(32, 64))
|
|
|
|
|
|
class SeedTrainLoaderManualModel(SeedTrainLoaderModel):
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
# manual
|
|
# access your optimizers with use_pl_optimizer=False. Default is True
|
|
(opt_a, opt_b) = self.optimizers(use_pl_optimizer=True)
|
|
loss_1 = self.step(batch)
|
|
|
|
self.manual_backward(loss_1)
|
|
opt_a.step()
|
|
|
|
# fake discriminator
|
|
loss_2 = self.step(batch[0])
|
|
|
|
# ensure we forward the correct params to the optimizer
|
|
# without retain_graph we can't do multiple backward passes
|
|
self.manual_backward(loss_2)
|
|
# todo: understand why synchronization breaks there.
|
|
# self.manual_backward(loss_2, retain_graph=True)
|
|
opt_b.step()
|
|
|
|
assert self.layer.weight.grad is None or torch.all(self.layer.weight.grad == 0)
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
# outputs should be an array with an entry per optimizer
|
|
assert len(outputs) == 2
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
return optimizer, optimizer_2
|
|
|
|
@property
|
|
def automatic_optimization(self) -> bool:
|
|
return False
|
|
|
|
|
|
class SeedTrainLoaderMultipleOptimizersModel(SeedTrainLoaderModel):
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
output = self.layer(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
# outputs should be an array with an entry per optimizer
|
|
assert len(outputs) == 2
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
return optimizer, optimizer_2
|
|
|
|
|
|
def record_ddp_fit_model_stats(trainer, model, use_cuda):
|
|
"""Helper to calculate wall clock time for fit + max allocated memory.
|
|
|
|
Args:
|
|
trainer: The trainer object.
|
|
model: The model to fit.
|
|
use_cuda: Whether to sync CUDA kernels.
|
|
|
|
Returns:
|
|
Max Memory if using GPUs, and total wall clock time.
|
|
"""
|
|
max_memory = None
|
|
|
|
time_start = time.perf_counter()
|
|
if use_cuda:
|
|
torch.cuda.reset_peak_memory_stats()
|
|
torch.cuda.synchronize()
|
|
|
|
trainer.fit(model)
|
|
|
|
if use_cuda:
|
|
torch.cuda.synchronize()
|
|
max_memory = torch.cuda.max_memory_allocated() / 2**20
|
|
|
|
total_time = time.perf_counter() - time_start
|
|
|
|
return max_memory, total_time
|
|
|
|
|
|
def plugin_parity_test(
|
|
model_cls: Type[SeedTrainLoaderModel],
|
|
seed: int = 42,
|
|
gpus: int = 0,
|
|
precision: int = 32,
|
|
max_percent_speed_diff: float = 0.1,
|
|
):
|
|
"""Ensures that the trained model is identical to the standard DDP implementation. Also checks for speed/memory
|
|
regressions, we should expect always less memory but performance to fluctuate.
|
|
|
|
Args:
|
|
model_cls: Model class to use for test.
|
|
seed: Seed for generators. Note that this does not handle the seed for data-loading on multi-process.
|
|
gpus: Number of GPUS to enable.
|
|
precision: Whether to use AMP or normal FP32 training.
|
|
max_percent_speed_diff: The maximum speed difference compared to normal DDP training.
|
|
This is more a safety net for variability in CI which can vary in speed, not for benchmarking.
|
|
"""
|
|
|
|
# Train normal DDP
|
|
seed_everything(seed)
|
|
ddp_model = model_cls()
|
|
use_cuda = gpus > 0
|
|
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
max_epochs=1,
|
|
accelerator="gpu",
|
|
devices=gpus,
|
|
precision=precision,
|
|
strategy="ddp_spawn",
|
|
benchmark=False,
|
|
)
|
|
|
|
max_memory_ddp, ddp_time = record_ddp_fit_model_stats(trainer=trainer, model=ddp_model, use_cuda=use_cuda)
|
|
|
|
# Reset and train Custom DDP
|
|
seed_everything(seed)
|
|
custom_plugin_model = model_cls()
|
|
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
max_epochs=1,
|
|
accelerator="gpu",
|
|
devices=gpus,
|
|
precision=precision,
|
|
strategy="ddp_sharded_spawn",
|
|
benchmark=False,
|
|
)
|
|
assert isinstance(trainer.strategy, DDPSpawnShardedStrategy)
|
|
|
|
max_memory_custom, custom_model_time = record_ddp_fit_model_stats(
|
|
trainer=trainer, model=custom_plugin_model, use_cuda=use_cuda
|
|
)
|
|
|
|
# Assert model parameters are identical after fit
|
|
for ddp_param, custom_param in zip(ddp_model.parameters(), custom_plugin_model.parameters()):
|
|
assert torch.equal(ddp_param, custom_param), "Model parameters are different between DDP and Custom plugin"
|
|
|
|
# Assert speed parity by ensuring percentage difference between custom/ddp is below threshold
|
|
percent_diff = (custom_model_time - ddp_time) / custom_model_time
|
|
|
|
assert (
|
|
percent_diff <= max_percent_speed_diff
|
|
), f"Custom DDP was too slow compared to regular DDP, Custom Plugin Time: {custom_model_time}, DDP Time: {ddp_time}"
|
|
|
|
if use_cuda:
|
|
# Assert CUDA memory parity
|
|
assert max_memory_custom <= max_memory_ddp, (
|
|
"Custom plugin used too much memory compared to DDP, "
|
|
f"Custom Mem: {max_memory_custom}, DDP Mem: {max_memory_ddp}"
|
|
)
|
|
|
|
|
|
@RunIf(skip_windows=True, fairscale=True)
|
|
@pytest.mark.parametrize(
|
|
"kwargs",
|
|
[
|
|
pytest.param(dict(gpus=1, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=1)),
|
|
pytest.param(
|
|
dict(gpus=1, precision=16, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=1, amp_native=True)
|
|
),
|
|
pytest.param(dict(gpus=2, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=2)),
|
|
pytest.param(
|
|
dict(gpus=2, precision=16, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=2, amp_native=True)
|
|
),
|
|
pytest.param(
|
|
dict(gpus=2, model_cls=SeedTrainLoaderMultipleOptimizersModel),
|
|
marks=[
|
|
RunIf(min_gpus=2),
|
|
pytest.mark.skip(reason="TODO: Current issue with multiple optimizers and FairScale."),
|
|
],
|
|
),
|
|
pytest.param(
|
|
dict(gpus=2, model_cls=SeedTrainLoaderManualModel),
|
|
marks=[
|
|
RunIf(min_gpus=2),
|
|
pytest.mark.skip(reason="TODO: Current issue with multiple optimizers and FairScale."),
|
|
],
|
|
),
|
|
],
|
|
)
|
|
def test_ddp_spawn_sharded_strategy(kwargs):
|
|
if kwargs["gpus"] > 1:
|
|
# TODO: decrease speed diff since only 2 GPUs sharding 2 optimizers
|
|
kwargs["max_percent_speed_diff"] = 0.25
|
|
plugin_parity_test(**kwargs)
|