lightning/tests/benchmarks/test_sharded_parity.py

223 lines
7.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from typing import Type
import pytest
import torch
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.strategies import DDPSpawnShardedStrategy
from tests.helpers.boring_model import BoringModel, RandomDataset
from tests.helpers.runif import RunIf
class SeedTrainLoaderModel(BoringModel):
"""Overrides training loader to ensure we enforce the same seed for all DDP processes."""
def train_dataloader(self):
seed_everything(42)
return torch.utils.data.DataLoader(RandomDataset(32, 64))
class SeedTrainLoaderManualModel(SeedTrainLoaderModel):
def training_step(self, batch, batch_idx, optimizer_idx):
# manual
# access your optimizers with use_pl_optimizer=False. Default is True
(opt_a, opt_b) = self.optimizers(use_pl_optimizer=True)
loss_1 = self.step(batch)
self.manual_backward(loss_1)
opt_a.step()
# fake discriminator
loss_2 = self.step(batch[0])
# ensure we forward the correct params to the optimizer
# without retain_graph we can't do multiple backward passes
self.manual_backward(loss_2)
# todo: understand why synchronization breaks there.
# self.manual_backward(loss_2, retain_graph=True)
opt_b.step()
assert self.layer.weight.grad is None or torch.all(self.layer.weight.grad == 0)
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
return optimizer, optimizer_2
@property
def automatic_optimization(self) -> bool:
return False
class SeedTrainLoaderMultipleOptimizersModel(SeedTrainLoaderModel):
def training_step(self, batch, batch_idx, optimizer_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
return optimizer, optimizer_2
def record_ddp_fit_model_stats(trainer, model, use_cuda):
"""Helper to calculate wall clock time for fit + max allocated memory.
Args:
trainer: The trainer object.
model: The model to fit.
use_cuda: Whether to sync CUDA kernels.
Returns:
Max Memory if using GPUs, and total wall clock time.
"""
max_memory = None
time_start = time.perf_counter()
if use_cuda:
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
trainer.fit(model)
if use_cuda:
torch.cuda.synchronize()
max_memory = torch.cuda.max_memory_allocated() / 2**20
total_time = time.perf_counter() - time_start
return max_memory, total_time
def plugin_parity_test(
model_cls: Type[SeedTrainLoaderModel],
seed: int = 42,
gpus: int = 0,
precision: int = 32,
max_percent_speed_diff: float = 0.1,
):
"""Ensures that the trained model is identical to the standard DDP implementation. Also checks for speed/memory
regressions, we should expect always less memory but performance to fluctuate.
Args:
model_cls: Model class to use for test.
seed: Seed for generators. Note that this does not handle the seed for data-loading on multi-process.
gpus: Number of GPUS to enable.
precision: Whether to use AMP or normal FP32 training.
max_percent_speed_diff: The maximum speed difference compared to normal DDP training.
This is more a safety net for variability in CI which can vary in speed, not for benchmarking.
"""
# Train normal DDP
seed_everything(seed)
ddp_model = model_cls()
use_cuda = gpus > 0
trainer = Trainer(
fast_dev_run=True,
max_epochs=1,
accelerator="gpu",
devices=gpus,
precision=precision,
strategy="ddp_spawn",
benchmark=False,
)
max_memory_ddp, ddp_time = record_ddp_fit_model_stats(trainer=trainer, model=ddp_model, use_cuda=use_cuda)
# Reset and train Custom DDP
seed_everything(seed)
custom_plugin_model = model_cls()
trainer = Trainer(
fast_dev_run=True,
max_epochs=1,
accelerator="gpu",
devices=gpus,
precision=precision,
strategy="ddp_sharded_spawn",
benchmark=False,
)
assert isinstance(trainer.strategy, DDPSpawnShardedStrategy)
max_memory_custom, custom_model_time = record_ddp_fit_model_stats(
trainer=trainer, model=custom_plugin_model, use_cuda=use_cuda
)
# Assert model parameters are identical after fit
for ddp_param, custom_param in zip(ddp_model.parameters(), custom_plugin_model.parameters()):
assert torch.equal(ddp_param, custom_param), "Model parameters are different between DDP and Custom plugin"
# Assert speed parity by ensuring percentage difference between custom/ddp is below threshold
percent_diff = (custom_model_time - ddp_time) / custom_model_time
assert (
percent_diff <= max_percent_speed_diff
), f"Custom DDP was too slow compared to regular DDP, Custom Plugin Time: {custom_model_time}, DDP Time: {ddp_time}"
if use_cuda:
# Assert CUDA memory parity
assert max_memory_custom <= max_memory_ddp, (
"Custom plugin used too much memory compared to DDP, "
f"Custom Mem: {max_memory_custom}, DDP Mem: {max_memory_ddp}"
)
@RunIf(skip_windows=True, fairscale=True)
@pytest.mark.parametrize(
"kwargs",
[
pytest.param(dict(gpus=1, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=1)),
pytest.param(
dict(gpus=1, precision=16, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=1, amp_native=True)
),
pytest.param(dict(gpus=2, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=2)),
pytest.param(
dict(gpus=2, precision=16, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=2, amp_native=True)
),
pytest.param(
dict(gpus=2, model_cls=SeedTrainLoaderMultipleOptimizersModel),
marks=[
RunIf(min_gpus=2),
pytest.mark.skip(reason="TODO: Current issue with multiple optimizers and FairScale."),
],
),
pytest.param(
dict(gpus=2, model_cls=SeedTrainLoaderManualModel),
marks=[
RunIf(min_gpus=2),
pytest.mark.skip(reason="TODO: Current issue with multiple optimizers and FairScale."),
],
),
],
)
def test_ddp_spawn_sharded_strategy(kwargs):
if kwargs["gpus"] > 1:
# TODO: decrease speed diff since only 2 GPUs sharding 2 optimizers
kwargs["max_percent_speed_diff"] = 0.25
plugin_parity_test(**kwargs)