199 lines
6.3 KiB
Python
199 lines
6.3 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import time
|
|
from collections import Counter
|
|
from functools import wraps
|
|
from typing import Callable, Any, Optional
|
|
|
|
|
|
def enabled_only(fn: Callable):
|
|
"""Decorate a logger method to run it only on the process with rank 0.
|
|
|
|
Args:
|
|
fn: Function to decorate
|
|
"""
|
|
|
|
@wraps(fn)
|
|
def wrapped_fn(self, *args, **kwargs):
|
|
if self.enabled:
|
|
fn(self, *args, **kwargs)
|
|
|
|
return wrapped_fn
|
|
|
|
|
|
class InternalDebugger(object):
|
|
|
|
def __init__(self, trainer):
|
|
self.enabled = os.environ.get('PL_DEV_DEBUG', '0') == '1'
|
|
self.trainer = trainer
|
|
self.logged_metrics = []
|
|
self.pbar_added_metrics = []
|
|
self.saved_train_losses = []
|
|
self.saved_val_losses = []
|
|
self.saved_test_losses = []
|
|
self.early_stopping_history = []
|
|
self.checkpoint_callback_history = []
|
|
self.events = []
|
|
self.saved_lr_scheduler_updates = []
|
|
self.train_dataloader_calls = []
|
|
self.val_dataloader_calls = []
|
|
self.test_dataloader_calls = []
|
|
self.dataloader_sequence_calls = []
|
|
|
|
def track_event(
|
|
self,
|
|
evt_type: str,
|
|
evt_value: Any = None,
|
|
global_rank: Optional[int] = None,
|
|
local_rank: Optional[int] = None,
|
|
comment: str = ''
|
|
) -> None:
|
|
self.events.append({
|
|
"timestamp": time.time(),
|
|
"event": evt_type,
|
|
"value": evt_value,
|
|
"global_rank": global_rank,
|
|
"local_rank": local_rank,
|
|
"comment": comment,
|
|
})
|
|
|
|
def count_events(self, evt_type: str, strict=False) -> int:
|
|
count = 0
|
|
for evt in self.events:
|
|
if strict and evt["event"] == evt_type:
|
|
count += 1
|
|
elif not strict and evt_type in evt["event"]:
|
|
count += 1
|
|
return count
|
|
|
|
@enabled_only
|
|
def track_load_dataloader_call(self, name, dataloaders):
|
|
loader_counts = len(dataloaders)
|
|
|
|
lengths = []
|
|
for dl in dataloaders:
|
|
try:
|
|
length = len(dl)
|
|
except Exception as e:
|
|
length = -1
|
|
lengths.append(length)
|
|
|
|
values = {
|
|
'global_step': self.trainer.global_step,
|
|
'epoch': self.trainer.current_epoch,
|
|
'num_loaders': loader_counts,
|
|
'lengths': lengths,
|
|
'name': name
|
|
}
|
|
|
|
# track the sequence in case we need to verify the sequence
|
|
self.dataloader_sequence_calls.append(values)
|
|
|
|
if 'train' in name:
|
|
self.train_dataloader_calls.append(values)
|
|
elif 'val' in name:
|
|
self.val_dataloader_calls.append(values)
|
|
elif 'test' in name:
|
|
self.test_dataloader_calls.append(values)
|
|
|
|
@enabled_only
|
|
def track_logged_metrics_history(self, scalar_metrics):
|
|
scalar_metrics['global_step'] = self.trainer.global_step
|
|
self.logged_metrics.append(scalar_metrics)
|
|
|
|
@enabled_only
|
|
def track_train_loss_history(self, batch_idx, loss):
|
|
loss_dict = {'batch_idx': batch_idx, 'epoch': self.trainer.current_epoch, 'loss': loss.detach()}
|
|
self.saved_train_losses.append(loss_dict)
|
|
|
|
@enabled_only
|
|
def track_lr_schedulers_update(self, batch_idx, interval, scheduler_idx, old_lr, new_lr, monitor_key=None):
|
|
loss_dict = {
|
|
'batch_idx': batch_idx,
|
|
'interval': interval,
|
|
'scheduler_idx': scheduler_idx,
|
|
'epoch': self.trainer.current_epoch,
|
|
'monitor_key': monitor_key,
|
|
'old_lr': old_lr,
|
|
'new_lr': new_lr
|
|
}
|
|
self.saved_lr_scheduler_updates.append(loss_dict)
|
|
|
|
@enabled_only
|
|
def track_eval_loss_history(self, test_mode, batch_idx, dataloader_idx, output):
|
|
loss_dict = {
|
|
'sanity_check': self.trainer.running_sanity_check,
|
|
'dataloader_idx': dataloader_idx,
|
|
'batch_idx': batch_idx,
|
|
'epoch': self.trainer.current_epoch,
|
|
'output': output
|
|
}
|
|
|
|
if test_mode:
|
|
self.saved_test_losses.append(loss_dict)
|
|
else:
|
|
self.saved_val_losses.append(loss_dict)
|
|
|
|
@enabled_only
|
|
def track_pbar_metrics_history(self, metrics):
|
|
metrics['debug_epoch'] = self.trainer.current_epoch
|
|
self.pbar_added_metrics.append(metrics)
|
|
|
|
@enabled_only
|
|
def track_early_stopping_history(self, callback, current):
|
|
debug_dict = {
|
|
'epoch': self.trainer.current_epoch,
|
|
'global_step': self.trainer.global_step,
|
|
'rank': self.trainer.global_rank,
|
|
'current': current,
|
|
'best': callback.best_score,
|
|
'patience': callback.wait_count
|
|
}
|
|
self.early_stopping_history.append(debug_dict)
|
|
|
|
@enabled_only
|
|
def track_checkpointing_history(self, filepath):
|
|
cb = self.trainer.checkpoint_callback
|
|
debug_dict = {
|
|
'epoch': self.trainer.current_epoch,
|
|
'global_step': self.trainer.global_step,
|
|
'monitor': cb.monitor,
|
|
'rank': self.trainer.global_rank,
|
|
'filepath': filepath
|
|
}
|
|
self.checkpoint_callback_history.append(debug_dict)
|
|
|
|
@property
|
|
def num_seen_sanity_check_batches(self):
|
|
count = len([x for x in self.saved_val_losses if x['sanity_check']])
|
|
return count
|
|
|
|
@property
|
|
def num_seen_val_check_batches(self):
|
|
counts = Counter()
|
|
for x in self.saved_val_losses:
|
|
if not x['sanity_check']:
|
|
counts.update({x['dataloader_idx']: 1})
|
|
return counts
|
|
|
|
@property
|
|
def num_seen_test_check_batches(self):
|
|
counts = Counter()
|
|
for x in self.saved_test_losses:
|
|
if not x['sanity_check']:
|
|
counts.update({x['dataloader_idx']: 1})
|
|
return counts
|