915 lines
38 KiB
Python
915 lines
38 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from contextlib import contextmanager, suppress
|
|
from copy import copy, deepcopy
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from pytorch_lightning.callbacks import EarlyStopping
|
|
from pytorch_lightning.core.optimizer import LightningOptimizer
|
|
from pytorch_lightning.core.step_result import Result
|
|
from pytorch_lightning.plugins import ParallelPlugin
|
|
from pytorch_lightning.trainer.states import TrainerState
|
|
from pytorch_lightning.trainer.supporters import TensorRunningAccum
|
|
from pytorch_lightning.utilities import _TPU_AVAILABLE, AMPType, DeviceType, parsing
|
|
from pytorch_lightning.utilities.distributed import rank_zero_info
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities.finite_checks import detect_nan_parameters
|
|
from pytorch_lightning.utilities.model_helpers import is_overridden
|
|
from pytorch_lightning.utilities.parsing import AttributeDict
|
|
from pytorch_lightning.utilities.warnings import WarningCache
|
|
|
|
|
|
class TrainLoop:
|
|
|
|
def __init__(self, trainer, multiple_trainloader_mode: str):
|
|
self.trainer = trainer
|
|
self.accumulated_loss = None
|
|
self.warning_cache = WarningCache()
|
|
self._teardown_already_run = False
|
|
self.running_loss = TensorRunningAccum(window_length=20)
|
|
self.automatic_optimization = True
|
|
self._curr_step_result = None
|
|
self._cur_grad_norm_dict = None
|
|
self._multiple_trainloader_mode = multiple_trainloader_mode
|
|
self._skip_backward = False
|
|
self.trainer._multiple_trainloader_mode = multiple_trainloader_mode
|
|
|
|
def on_trainer_init(
|
|
self,
|
|
max_epochs: Optional[int],
|
|
min_epochs: Optional[int],
|
|
max_steps: Optional[int],
|
|
min_steps: Optional[int],
|
|
num_sanity_val_steps: int,
|
|
) -> None:
|
|
self.trainer.global_step = 0
|
|
self.trainer.current_epoch = 0
|
|
self.trainer.should_stop = False
|
|
self.trainer._state = TrainerState.INITIALIZING
|
|
|
|
self.trainer.total_batch_idx = 0
|
|
self.trainer.batch_idx = 0
|
|
self.trainer.num_training_batches = 0
|
|
self.trainer.train_dataloader = None
|
|
|
|
# If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000
|
|
self.trainer.max_epochs = 1000 if (max_epochs is None and max_steps is None) else max_epochs
|
|
# If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1
|
|
self.trainer.min_epochs = 1 if (min_epochs is None and min_steps is None) else min_epochs
|
|
self.trainer.max_steps = max_steps
|
|
self.trainer.min_steps = min_steps
|
|
|
|
if num_sanity_val_steps == -1:
|
|
self.trainer.num_sanity_val_steps = float("inf")
|
|
else:
|
|
self.trainer.num_sanity_val_steps = num_sanity_val_steps
|
|
|
|
@property
|
|
def num_optimizers(self):
|
|
num_optimizers = len(self.get_optimizers_iterable())
|
|
return num_optimizers
|
|
|
|
def should_skip_training(self):
|
|
should_by_max_steps = self.trainer.max_steps is not None and self.trainer.global_step >= self.trainer.max_steps
|
|
should_by_epoch = self.trainer.max_epochs is not None and self.trainer.current_epoch >= self.trainer.max_epochs
|
|
return should_by_max_steps or should_by_epoch or self.trainer.num_training_batches == 0
|
|
|
|
def on_train_start(self):
|
|
# hook
|
|
self.trainer.call_hook("on_train_start")
|
|
|
|
def setup_fit(self, model, train_dataloader=None, val_dataloaders=None, datamodule=None):
|
|
# clean hparams
|
|
if hasattr(model, "hparams"):
|
|
parsing.clean_namespace(model.hparams)
|
|
|
|
# links data to the trainer
|
|
self.trainer.data_connector.attach_data(model, train_dataloader, val_dataloaders, datamodule)
|
|
|
|
# check that model is configured correctly
|
|
self.trainer.config_validator.verify_loop_configurations(model)
|
|
|
|
# attach model log function to callback
|
|
self.trainer.callback_connector.attach_model_logging_functions(model)
|
|
|
|
def on_train_end(self):
|
|
if self._teardown_already_run:
|
|
return
|
|
self._teardown_already_run = True
|
|
|
|
# trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
|
|
# when a checkpoint was saved at the last step
|
|
self.trainer.global_step -= 1
|
|
self.check_checkpoint_callback(should_update=True, is_last=True)
|
|
self.trainer.global_step += 1
|
|
|
|
# hook
|
|
self.trainer.call_hook("on_train_end")
|
|
|
|
# todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers.
|
|
# It might be related to xla tensors blocked when moving the cpu
|
|
# kill loggers
|
|
if self.trainer.logger is not None:
|
|
self.trainer.logger.finalize("success")
|
|
|
|
# summarize profile results
|
|
self.trainer.profiler.describe()
|
|
|
|
# give accelerators a chance to finish
|
|
self.trainer.accelerator.on_train_end()
|
|
|
|
# reset bookkeeping
|
|
self.trainer._running_stage = None
|
|
|
|
def check_checkpoint_callback(self, should_update, is_last=False):
|
|
# TODO bake this logic into the ModelCheckpoint callback
|
|
if should_update and self.trainer.checkpoint_connector.has_trained:
|
|
callbacks = self.trainer.checkpoint_callbacks
|
|
|
|
if is_last and any(cb.save_last and cb.verbose for cb in callbacks):
|
|
rank_zero_info("Saving latest checkpoint...")
|
|
|
|
model = self.trainer.lightning_module
|
|
|
|
for cb in callbacks:
|
|
cb.on_validation_end(self.trainer, model)
|
|
|
|
def check_early_stopping_callback(self, should_update):
|
|
# TODO bake this logic into the EarlyStopping callback
|
|
if should_update and self.trainer.checkpoint_connector.has_trained:
|
|
callbacks = [c for c in self.trainer.callbacks if isinstance(c, EarlyStopping)]
|
|
model = self.trainer.lightning_module
|
|
|
|
for cb in callbacks:
|
|
cb.on_validation_end(self.trainer, model)
|
|
|
|
def on_train_epoch_start(self, epoch):
|
|
|
|
# update training progress in trainer
|
|
self.trainer.current_epoch = epoch
|
|
|
|
model = self.trainer.lightning_module
|
|
|
|
# reset train dataloader
|
|
if epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
|
|
self.trainer.reset_train_dataloader(model)
|
|
|
|
# todo: specify the possible exception
|
|
with suppress(Exception):
|
|
# set seed for distributed sampler (enables shuffling for each epoch)
|
|
self.trainer.train_dataloader.sampler.set_epoch(epoch)
|
|
|
|
# changing gradient according accumulation_scheduler
|
|
self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module)
|
|
|
|
# stores accumulated grad fractions per batch
|
|
self.accumulated_loss = TensorRunningAccum(window_length=self.trainer.accumulate_grad_batches)
|
|
|
|
# hook
|
|
self.trainer.call_hook("on_epoch_start")
|
|
self.trainer.call_hook("on_train_epoch_start")
|
|
|
|
def on_train_batch_end(self, epoch_output, batch_end_outputs, batch, batch_idx, dataloader_idx):
|
|
batch_end_outputs = [opt_idx_out for opt_idx_out in batch_end_outputs if len(opt_idx_out)]
|
|
|
|
processed_batch_end_outputs = TrainLoop._prepare_outputs(batch_end_outputs, batch_mode=True)
|
|
|
|
# hook
|
|
self.trainer.call_hook('on_train_batch_end', processed_batch_end_outputs, batch, batch_idx, dataloader_idx)
|
|
self.trainer.call_hook('on_batch_end')
|
|
|
|
# figure out what to track for epoch end
|
|
self.track_epoch_end_reduce_metrics(epoch_output, batch_end_outputs)
|
|
|
|
# reset batch logger internals
|
|
self.trainer.logger_connector.on_train_batch_end()
|
|
|
|
def reset_train_val_dataloaders(self, model):
|
|
if self.trainer.train_dataloader is None or not self.trainer.reload_dataloaders_every_epoch:
|
|
self.trainer.reset_train_dataloader(model)
|
|
|
|
if self.trainer.val_dataloaders is None and not self.trainer.reload_dataloaders_every_epoch:
|
|
self.trainer.reset_val_dataloader(model)
|
|
|
|
def track_epoch_end_reduce_metrics(self, epoch_output, batch_end_outputs):
|
|
|
|
# track the outputs to reduce at the end of the epoch
|
|
for opt_idx, opt_outputs in enumerate(batch_end_outputs):
|
|
sample_output = opt_outputs[-1]
|
|
|
|
# decide if we need to reduce at the end of the epoch automatically
|
|
auto_reduce_tng_result = isinstance(sample_output, Result) and sample_output.should_reduce_on_epoch_end
|
|
hook_overridden = (
|
|
is_overridden("training_epoch_end", model=self.trainer.lightning_module)
|
|
or is_overridden("on_train_epoch_end", model=self.trainer.lightning_module)
|
|
)
|
|
|
|
# only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
|
|
if not (hook_overridden or auto_reduce_tng_result):
|
|
continue
|
|
|
|
# with 1 step (no tbptt) don't use a sequence at epoch end
|
|
if isinstance(opt_outputs, list) and len(opt_outputs) == 1 and not isinstance(opt_outputs[0], Result):
|
|
opt_outputs = opt_outputs[0]
|
|
|
|
epoch_output[opt_idx].append(opt_outputs)
|
|
|
|
def get_optimizers_iterable(self):
|
|
"""
|
|
Generates an iterable with (idx, optimizer) for each optimizer.
|
|
"""
|
|
if not self.trainer.optimizer_frequencies:
|
|
# call training_step once per optimizer
|
|
return list(enumerate(self.trainer.optimizers))
|
|
|
|
optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies)
|
|
optimizers_loop_length = optimizer_freq_cumsum[-1]
|
|
current_place_in_loop = self.trainer.total_batch_idx % optimizers_loop_length
|
|
|
|
# find optimzier index by looking for the first {item > current_place} in the cumsum list
|
|
opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
|
|
return [[opt_idx, self.trainer.optimizers[opt_idx]]]
|
|
|
|
def on_after_backward(self, training_step_output, batch_idx, untouched_loss):
|
|
training_step_output.detach()
|
|
|
|
# insert after step hook
|
|
self.trainer.call_hook("on_after_backward")
|
|
|
|
# when in dev debugging track the losses
|
|
self.trainer.dev_debugger.track_train_loss_history(batch_idx, untouched_loss.detach())
|
|
|
|
def _check_training_step_output(self, training_step_output):
|
|
if isinstance(training_step_output, torch.Tensor) and not self.automatic_optimization:
|
|
if training_step_output.grad_fn is None:
|
|
# TODO: Find why - RuntimeError: Expected to mark a variable ready only once ...
|
|
raise MisconfigurationException("In manual optimization, `training_step` should not return a Tensor")
|
|
|
|
def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
|
|
# give the PL module a result for logging
|
|
model_ref = self.trainer.lightning_module
|
|
|
|
with self.trainer.profiler.profile("model_forward"):
|
|
args = self.build_train_args(split_batch, batch_idx, opt_idx, hiddens)
|
|
|
|
# manually capture logged metrics
|
|
model_ref._current_fx_name = 'training_step'
|
|
model_ref._results = Result()
|
|
with self.trainer.profiler.profile("training_step"):
|
|
training_step_output = self.trainer.accelerator.training_step(args)
|
|
self.trainer.accelerator.post_training_step()
|
|
|
|
self.trainer.logger_connector.cache_logged_metrics()
|
|
|
|
self._check_training_step_output(training_step_output)
|
|
|
|
training_step_output = self.trainer.call_hook("training_step_end", training_step_output)
|
|
|
|
training_step_output_for_epoch_end, training_step_output = self._process_training_step_output(
|
|
training_step_output, split_batch
|
|
)
|
|
if training_step_output_for_epoch_end is None:
|
|
return
|
|
|
|
# enable empty loss when using manual opt
|
|
closure_loss = None
|
|
untouched_loss = None
|
|
|
|
if self.automatic_optimization:
|
|
# accumulate loss. if accumulate_grad_batches==1, no effect
|
|
closure_loss = training_step_output.minimize / self.trainer.accumulate_grad_batches
|
|
|
|
# the loss will get scaled for amp. avoid any modifications to it
|
|
untouched_loss = closure_loss.detach().clone()
|
|
|
|
# result
|
|
result = AttributeDict(
|
|
closure_loss=closure_loss,
|
|
loss=untouched_loss,
|
|
training_step_output=training_step_output,
|
|
training_step_output_for_epoch_end=training_step_output_for_epoch_end,
|
|
)
|
|
return result
|
|
|
|
def _process_training_step_output(self, training_step_output, split_batch):
|
|
training_step_output_for_epoch_end = training_step_output
|
|
|
|
# enable validation_step return None
|
|
if training_step_output_for_epoch_end is None:
|
|
return None, None
|
|
|
|
result = self.trainer.lightning_module._results
|
|
|
|
loss = None
|
|
hiddens = None
|
|
result["extra"] = {}
|
|
|
|
# handle dict return
|
|
if isinstance(training_step_output, dict):
|
|
loss = training_step_output.pop("loss", None)
|
|
hiddens = training_step_output.pop("hiddens", None)
|
|
if hiddens is not None:
|
|
hiddens = hiddens.detach()
|
|
result["extra"] = training_step_output
|
|
|
|
# handle scalar return
|
|
elif isinstance(training_step_output, torch.Tensor):
|
|
loss = training_step_output
|
|
|
|
# map to results under the hood
|
|
result.minimize = loss
|
|
self.trainer.hiddens = hiddens
|
|
|
|
# track batch for manual reduction with result
|
|
result.track_batch_size(len(split_batch))
|
|
|
|
# track metrics without grads for epoch reduction
|
|
training_step_output_for_epoch_end = copy(result)
|
|
training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach()
|
|
if self.trainer.move_metrics_to_cpu:
|
|
training_step_output_for_epoch_end = training_step_output_for_epoch_end.cpu()
|
|
|
|
return training_step_output_for_epoch_end, result
|
|
|
|
@staticmethod
|
|
def _prepare_outputs(
|
|
outputs: List[List[List[Result]]],
|
|
batch_mode: bool,
|
|
) -> Union[List[List[List[Dict]]], List[List[Dict]], List[Dict], Dict]:
|
|
"""
|
|
Extract required information from batch or epoch end results.
|
|
|
|
Args:
|
|
outputs: A 3-dimensional list of ``Result`` objects with dimensions:
|
|
[optimizer outs][batch outs][tbptt steps].
|
|
|
|
batch_mode: If True, ignore the batch output dimension.
|
|
|
|
Returns:
|
|
The cleaned outputs with ``Result`` objects converted to dictionaries. All list dimensions of size one will
|
|
be collapsed.
|
|
"""
|
|
processed_outputs = []
|
|
for opt_outputs in outputs:
|
|
# handle an edge case where an optimizer output is the empty list
|
|
if len(opt_outputs) == 0:
|
|
continue
|
|
|
|
processed_batch_outputs = []
|
|
|
|
if batch_mode:
|
|
opt_outputs = [opt_outputs]
|
|
|
|
for batch_outputs in opt_outputs:
|
|
processed_tbptt_outputs = []
|
|
|
|
for tbptt_output in batch_outputs:
|
|
out = tbptt_output.extra
|
|
out['loss'] = tbptt_output.minimize
|
|
processed_tbptt_outputs.append(out)
|
|
|
|
# if there was only one tbptt step then we can collapse that dimension
|
|
if len(processed_tbptt_outputs) == 1:
|
|
processed_tbptt_outputs = processed_tbptt_outputs[0]
|
|
processed_batch_outputs.append(processed_tbptt_outputs)
|
|
|
|
# batch_outputs should be just one dict (or a list of dicts if using tbptt) per optimizer
|
|
if batch_mode:
|
|
processed_batch_outputs = processed_batch_outputs[0]
|
|
processed_outputs.append(processed_batch_outputs)
|
|
|
|
# if there is only one optimiser then we collapse that dimension
|
|
if len(processed_outputs) == 1:
|
|
processed_outputs = processed_outputs[0]
|
|
return processed_outputs
|
|
|
|
def optimizer_step(self, optimizer, opt_idx, batch_idx, train_step_and_backward_closure):
|
|
model_ref = self.trainer.lightning_module
|
|
|
|
is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
|
|
using_native_amp = self.trainer.amp_backend == AMPType.NATIVE
|
|
|
|
# native amp + lbfgs is a no go right now
|
|
if using_native_amp and is_lbfgs:
|
|
raise MisconfigurationException(
|
|
'native PyTorch amp and lbfgs are not compatible.'
|
|
' To request, please file a Github issue in PyTorch and tag @mcarilli'
|
|
)
|
|
|
|
# wraps into LightningOptimizer only for running step
|
|
optimizer = LightningOptimizer._to_lightning_optimizer(optimizer, self.trainer, opt_idx)
|
|
|
|
# model hook
|
|
model_ref.optimizer_step(
|
|
self.trainer.current_epoch,
|
|
batch_idx,
|
|
optimizer,
|
|
opt_idx,
|
|
train_step_and_backward_closure,
|
|
on_tpu=self.trainer._device_type == DeviceType.TPU and _TPU_AVAILABLE,
|
|
using_native_amp=using_native_amp,
|
|
using_lbfgs=is_lbfgs,
|
|
)
|
|
|
|
def on_before_zero_grad(self, optimizer):
|
|
self.trainer.call_hook('on_before_zero_grad', optimizer)
|
|
|
|
def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx):
|
|
self.trainer.accelerator.optimizer_zero_grad(self.trainer.current_epoch, batch_idx, optimizer, opt_idx)
|
|
|
|
def track_and_norm_grad(self, optimizer):
|
|
# track gradient norms
|
|
grad_norm_dic = self._track_gradient_norm()
|
|
|
|
# clip gradients
|
|
self.trainer.accelerator.clip_gradients(
|
|
optimizer, self.trainer.gradient_clip_val, gradient_clip_algorithm=self.trainer.gradient_clip_algorithm
|
|
)
|
|
self._cur_grad_norm_dict = grad_norm_dic
|
|
|
|
def _track_gradient_norm(self):
|
|
grad_norm_dict = {}
|
|
if (self.trainer.global_step + 1) % self.trainer.log_every_n_steps == 0:
|
|
if float(self.trainer.track_grad_norm) > 0:
|
|
model = self.trainer.lightning_module
|
|
grad_norm_dict = model.grad_norm(self.trainer.track_grad_norm)
|
|
return grad_norm_dict
|
|
|
|
def tbptt_split_batch(self, batch):
|
|
splits = [batch]
|
|
if self.trainer.truncated_bptt_steps is not None:
|
|
model_ref = self.trainer.lightning_module
|
|
with self.trainer.profiler.profile("tbptt_split_batch"):
|
|
splits = model_ref.tbptt_split_batch(batch, self.trainer.truncated_bptt_steps)
|
|
return splits
|
|
|
|
def run_training_epoch(self):
|
|
# modify dataloader if needed (ddp, etc...)
|
|
train_dataloader = self.trainer.accelerator.process_dataloader(self.trainer.train_dataloader)
|
|
|
|
# track epoch output
|
|
epoch_output = [[] for _ in range(self.num_optimizers)]
|
|
|
|
train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(train_dataloader)
|
|
dataloader_idx = 0
|
|
val_loop_called = False
|
|
|
|
for batch_idx, (batch, is_last_batch) in train_dataloader:
|
|
|
|
self.trainer.batch_idx = batch_idx
|
|
self.trainer.is_last_batch = is_last_batch
|
|
|
|
# ------------------------------------
|
|
# TRAINING_STEP + TRAINING_STEP_END
|
|
# ------------------------------------
|
|
with self.trainer.profiler.profile("run_training_batch"):
|
|
batch_output = self.run_training_batch(batch, batch_idx, dataloader_idx)
|
|
|
|
# when returning -1 from train_step, we end epoch early
|
|
if batch_output.signal == -1:
|
|
break
|
|
|
|
# hook
|
|
# TODO: add outputs to batches
|
|
self.on_train_batch_end(
|
|
epoch_output,
|
|
batch_output.training_step_output_for_epoch_end,
|
|
batch,
|
|
batch_idx,
|
|
dataloader_idx,
|
|
)
|
|
|
|
# -----------------------------------------
|
|
# SAVE METRICS TO LOGGERS
|
|
# -----------------------------------------
|
|
self.trainer.logger_connector.log_train_step_metrics(batch_output)
|
|
|
|
# -----------------------------------------
|
|
# VALIDATE IF NEEDED + CHECKPOINT CALLBACK
|
|
# -----------------------------------------
|
|
should_check_val = self.should_check_val_fx(batch_idx, is_last_batch)
|
|
if should_check_val:
|
|
self.trainer.validating = True
|
|
self.trainer.run_evaluation()
|
|
self.trainer.training = True
|
|
val_loop_called = True
|
|
|
|
# -----------------------------------------
|
|
# SAVE LOGGERS (ie: Tensorboard, etc...)
|
|
# -----------------------------------------
|
|
self.save_loggers_on_train_batch_end()
|
|
|
|
# update LR schedulers
|
|
monitor_metrics = deepcopy(self.trainer.logger_connector.callback_metrics)
|
|
self.update_train_loop_lr_schedulers(monitor_metrics=monitor_metrics)
|
|
self.trainer.checkpoint_connector.has_trained = True
|
|
|
|
# max steps reached, end training
|
|
if (
|
|
self.trainer.max_steps is not None and self.trainer.max_steps <= self.trainer.global_step + 1
|
|
and self._accumulated_batches_reached()
|
|
):
|
|
break
|
|
|
|
# end epoch early
|
|
# stop when the flag is changed or we've gone past the amount
|
|
# requested in the batches
|
|
if self.trainer.should_stop:
|
|
break
|
|
|
|
self.trainer.total_batch_idx += 1
|
|
|
|
# stop epoch if we limited the number of training batches
|
|
if self._num_training_batches_reached(is_last_batch):
|
|
break
|
|
|
|
# progress global step according to grads progress
|
|
self.increment_accumulated_grad_global_step()
|
|
|
|
# handle epoch_output on epoch end
|
|
self.on_train_epoch_end(epoch_output)
|
|
|
|
# log epoch metrics
|
|
self.trainer.logger_connector.log_train_epoch_end_metrics(epoch_output)
|
|
|
|
should_check_val = self.should_check_val_fx(batch_idx, is_last_batch, on_epoch=True)
|
|
should_skip_eval = self.trainer.evaluation_loop.should_skip_evaluation(self.trainer.num_val_batches)
|
|
should_train_only = self.trainer.disable_validation or should_skip_eval
|
|
|
|
# update epoch level lr_schedulers if no val loop outside train loop is triggered
|
|
if (val_loop_called and not should_check_val) or should_train_only:
|
|
self.trainer.optimizer_connector.update_learning_rates(interval='epoch')
|
|
|
|
if should_train_only:
|
|
self.check_checkpoint_callback(True)
|
|
self.check_early_stopping_callback(True)
|
|
|
|
if should_check_val:
|
|
self.trainer.validating = True
|
|
self.trainer.run_evaluation(on_epoch=True)
|
|
self.trainer.training = True
|
|
|
|
# increment the global step once
|
|
# progress global step according to grads progress
|
|
self.increment_accumulated_grad_global_step()
|
|
|
|
def on_train_epoch_end(self, epoch_output: List[List[List[Result]]]) -> None:
|
|
# inform logger the batch loop has finished
|
|
self.trainer.logger_connector.on_train_epoch_end()
|
|
|
|
# prepare epoch output
|
|
processed_epoch_output = TrainLoop._prepare_outputs(epoch_output, batch_mode=False)
|
|
|
|
# get the model and call model.training_epoch_end
|
|
model = self.trainer.lightning_module
|
|
|
|
if is_overridden('training_epoch_end', model=model):
|
|
# run training_epoch_end
|
|
# refresh the result for custom logging at the epoch level
|
|
model._current_fx_name = 'training_epoch_end'
|
|
|
|
# lightningmodule hook
|
|
training_epoch_end_output = model.training_epoch_end(processed_epoch_output)
|
|
|
|
if training_epoch_end_output is not None:
|
|
raise MisconfigurationException(
|
|
'training_epoch_end expects a return of None. '
|
|
'HINT: remove the return statement in training_epoch_end'
|
|
)
|
|
|
|
# capture logging
|
|
self.trainer.logger_connector.cache_logged_metrics()
|
|
|
|
# call train epoch end hooks
|
|
self.trainer.call_hook('on_train_epoch_end', processed_epoch_output)
|
|
self.trainer.call_hook('on_epoch_end')
|
|
|
|
def run_training_batch(self, batch, batch_idx, dataloader_idx):
|
|
# track grad norms
|
|
grad_norm_dic = {}
|
|
|
|
# bookkeeping
|
|
self.trainer.hiddens = None
|
|
|
|
optimizers = self.prepare_optimizers()
|
|
|
|
# track all outputs across time and num of optimizers
|
|
batch_outputs = [[] for _ in range(len(optimizers))]
|
|
|
|
if batch is None:
|
|
return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic)
|
|
|
|
# hook
|
|
response = self.trainer.call_hook("on_batch_start")
|
|
if response == -1:
|
|
return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)
|
|
|
|
# hook
|
|
response = self.trainer.call_hook("on_train_batch_start", batch, batch_idx, dataloader_idx)
|
|
if response == -1:
|
|
return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)
|
|
|
|
# lightning module hook
|
|
splits = self.tbptt_split_batch(batch)
|
|
|
|
for split_idx, split_batch in enumerate(splits):
|
|
|
|
# create an iterable for optimizers and loop over them
|
|
for opt_idx, optimizer in optimizers:
|
|
|
|
# toggle model params + set info to logger_connector
|
|
self.run_train_split_start(split_idx, split_batch, opt_idx, optimizer)
|
|
|
|
if self.should_accumulate():
|
|
# For gradient accumulation
|
|
|
|
# -------------------
|
|
# calculate loss (train step + train step end)
|
|
# -------------------
|
|
|
|
# automatic_optimization=True: perform dpp sync only when performing optimizer_step
|
|
# automatic_optimization=False: don't block synchronization here
|
|
with self.block_ddp_sync_behaviour():
|
|
self.training_step_and_backward(
|
|
split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens
|
|
)
|
|
|
|
batch_outputs = self._process_closure_result(
|
|
batch_outputs=batch_outputs,
|
|
opt_idx=opt_idx,
|
|
)
|
|
|
|
# ------------------------------
|
|
# BACKWARD PASS
|
|
# ------------------------------
|
|
# gradient update with accumulated gradients
|
|
|
|
else:
|
|
if self.automatic_optimization:
|
|
|
|
def train_step_and_backward_closure():
|
|
result = self.training_step_and_backward(
|
|
split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens
|
|
)
|
|
return None if result is None else result.loss
|
|
|
|
# optimizer step
|
|
self.optimizer_step(optimizer, opt_idx, batch_idx, train_step_and_backward_closure)
|
|
|
|
else:
|
|
self._curr_step_result = self.training_step(
|
|
split_batch, batch_idx, opt_idx, self.trainer.hiddens
|
|
)
|
|
|
|
if self._curr_step_result is None:
|
|
# user decided to skip optimization
|
|
# make sure to zero grad.
|
|
continue
|
|
|
|
batch_outputs = self._process_closure_result(
|
|
batch_outputs=batch_outputs,
|
|
opt_idx=opt_idx,
|
|
)
|
|
|
|
# todo: Properly aggregate grad_norm accros opt_idx and split_idx
|
|
grad_norm_dic = self._cur_grad_norm_dict
|
|
self._cur_grad_norm_dict = None
|
|
|
|
# update running loss + reset accumulated loss
|
|
self.update_running_loss()
|
|
|
|
result = AttributeDict(
|
|
signal=0,
|
|
grad_norm_dic=grad_norm_dic,
|
|
training_step_output_for_epoch_end=batch_outputs,
|
|
)
|
|
return result
|
|
|
|
@contextmanager
|
|
def block_ddp_sync_behaviour(self, should_block_sync: bool = False):
|
|
"""
|
|
automatic_optimization = True
|
|
Blocks ddp sync gradients behaviour on backwards pass.
|
|
This is useful for skipping sync when accumulating gradients, reducing communication overhead
|
|
|
|
automatic_optimization = False
|
|
do not block ddp gradient sync when using manual optimization
|
|
as gradients are needed within the training step
|
|
|
|
Returns:
|
|
context manager with sync behaviour off
|
|
|
|
"""
|
|
if (
|
|
isinstance(self.trainer.training_type_plugin, ParallelPlugin)
|
|
and (self.automatic_optimization or should_block_sync)
|
|
):
|
|
with self.trainer.training_type_plugin.block_backward_sync():
|
|
yield None
|
|
else:
|
|
yield None
|
|
|
|
def _process_closure_result(self, batch_outputs: list, opt_idx: int) -> list:
|
|
opt_closure_result = self._curr_step_result
|
|
|
|
if opt_closure_result is not None:
|
|
|
|
# cache metrics
|
|
self.trainer.logger_connector.cache_training_step_metrics(opt_closure_result)
|
|
|
|
# check if loss or model weights are nan
|
|
if self.trainer.terminate_on_nan:
|
|
self._check_finite(opt_closure_result.loss)
|
|
|
|
# track all the outputs across all steps
|
|
batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0
|
|
batch_outputs[batch_opt_idx].append(opt_closure_result.training_step_output_for_epoch_end)
|
|
|
|
if self.automatic_optimization:
|
|
# track total loss for logging (avoid mem leaks)
|
|
self.accumulated_loss.append(opt_closure_result.loss)
|
|
|
|
self._curr_step_result = None
|
|
|
|
return batch_outputs
|
|
|
|
def training_step_and_backward(self, split_batch, batch_idx, opt_idx, optimizer, hiddens):
|
|
"""Wrap forward, zero_grad and backward in a closure so second order methods work"""
|
|
with self.trainer.profiler.profile("training_step_and_backward"):
|
|
# lightning module hook
|
|
result = self.training_step(split_batch, batch_idx, opt_idx, hiddens)
|
|
self._curr_step_result = result
|
|
|
|
if not self._skip_backward and self.automatic_optimization:
|
|
is_first_batch_to_accumulate = batch_idx % self.trainer.accumulate_grad_batches == 0
|
|
|
|
if is_first_batch_to_accumulate:
|
|
self.on_before_zero_grad(optimizer)
|
|
self.optimizer_zero_grad(batch_idx, optimizer, opt_idx)
|
|
|
|
# backward pass
|
|
if result is not None:
|
|
with self.trainer.profiler.profile("backward"):
|
|
self.backward(result, optimizer, opt_idx)
|
|
|
|
# hook - call this hook only
|
|
# when gradients have finished to accumulate
|
|
if not self.should_accumulate():
|
|
self.on_after_backward(result.training_step_output, batch_idx, result.loss)
|
|
|
|
# check if loss or model weights are nan
|
|
if self.trainer.terminate_on_nan:
|
|
self._check_finite(result.loss)
|
|
|
|
else:
|
|
self.warning_cache.warn("training_step returned None if it was on purpose, ignore this warning...")
|
|
|
|
if len(self.trainer.optimizers) > 1:
|
|
# revert back to previous state
|
|
self.trainer.lightning_module.untoggle_optimizer(opt_idx)
|
|
|
|
return result
|
|
|
|
def _check_finite(self, loss: torch.Tensor) -> None:
|
|
if not torch.isfinite(loss).all():
|
|
raise ValueError(f'The loss returned in `training_step` is {loss}.')
|
|
model = self.trainer.lightning_module
|
|
detect_nan_parameters(model)
|
|
|
|
def backward(self, result, optimizer, opt_idx, *args, **kwargs):
|
|
self.trainer.dev_debugger.track_event("backward_call")
|
|
|
|
should_accumulate = self.should_accumulate()
|
|
|
|
# backward can be called manually in the training loop
|
|
if isinstance(result, torch.Tensor):
|
|
self.trainer.accelerator.backward(result, optimizer, opt_idx, should_accumulate, *args, **kwargs)
|
|
else:
|
|
result.closure_loss = self.trainer.accelerator.backward(
|
|
result.closure_loss, optimizer, opt_idx, should_accumulate, *args, **kwargs
|
|
)
|
|
|
|
if not self.should_accumulate():
|
|
# track gradients
|
|
self.track_and_norm_grad(optimizer=optimizer)
|
|
|
|
def update_train_loop_lr_schedulers(self, monitor_metrics=None):
|
|
num_accumulated_batches_reached = self._accumulated_batches_reached()
|
|
num_training_batches_reached = self._num_training_batches_reached()
|
|
|
|
if num_accumulated_batches_reached or num_training_batches_reached:
|
|
# update lr
|
|
self.trainer.optimizer_connector.update_learning_rates(interval="step", monitor_metrics=monitor_metrics)
|
|
|
|
def increment_accumulated_grad_global_step(self):
|
|
num_accumulated_batches_reached = self._accumulated_batches_reached()
|
|
num_training_batches_reached = self._num_training_batches_reached()
|
|
|
|
# progress global step according to grads progress
|
|
if num_accumulated_batches_reached or num_training_batches_reached:
|
|
self.trainer.global_step = self.trainer.accelerator.update_global_step(
|
|
self.trainer.total_batch_idx, self.trainer.global_step
|
|
)
|
|
|
|
def _accumulated_batches_reached(self):
|
|
return (self.trainer.batch_idx + 1) % self.trainer.accumulate_grad_batches == 0
|
|
|
|
def _num_training_batches_reached(self, is_last_batch=False):
|
|
return (self.trainer.batch_idx + 1) == self.trainer.num_training_batches or is_last_batch
|
|
|
|
def should_accumulate(self):
|
|
# checks if backward or backward + optimizer step (via closure)
|
|
accumulation_done = self._accumulated_batches_reached()
|
|
is_final_batch = self._num_training_batches_reached()
|
|
return not (accumulation_done or is_final_batch)
|
|
|
|
def should_check_val_fx(self, batch_idx, is_last_batch, on_epoch=False):
|
|
# decide if we should run validation
|
|
is_val_check_batch = (batch_idx + 1) % self.trainer.val_check_batch == 0
|
|
is_val_check_epoch = (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch == 0
|
|
can_check_val = self.trainer.enable_validation and is_val_check_epoch
|
|
is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float("inf")
|
|
epoch_end_val_check = (batch_idx + 1) % self.trainer.num_training_batches == 0
|
|
|
|
should_check_val = ((is_val_check_batch and epoch_end_val_check) or self.trainer.should_stop
|
|
or is_last_batch_for_infinite_dataset
|
|
) if on_epoch else (is_val_check_batch and not epoch_end_val_check)
|
|
|
|
return should_check_val and can_check_val
|
|
|
|
def build_train_args(self, batch, batch_idx, opt_idx, hiddens):
|
|
# enable not needing to add opt_idx to training_step
|
|
args = [batch, batch_idx]
|
|
|
|
if len(self.trainer.optimizers) > 1:
|
|
if self.trainer.has_arg("training_step", "optimizer_idx"):
|
|
if not self.automatic_optimization:
|
|
self.warning_cache.warn(
|
|
"`training_step` hook signature has changed in v1.3."
|
|
" `optimizer_idx` argument has been removed in case of manual optimization. Support for"
|
|
" the old signature will be removed in v1.5", DeprecationWarning
|
|
)
|
|
args.append(opt_idx)
|
|
elif not self.trainer.has_arg("training_step", "optimizer_idx") and self.automatic_optimization:
|
|
raise ValueError(
|
|
f"Your LightningModule defines {len(self.trainer.optimizers)} optimizers but"
|
|
' `training_step` is missing the `optimizer_idx` argument.'
|
|
)
|
|
|
|
# pass hiddens if using tbptt
|
|
if self.trainer.truncated_bptt_steps is not None:
|
|
args.append(hiddens)
|
|
|
|
return args
|
|
|
|
def save_loggers_on_train_batch_end(self):
|
|
# when loggers should save to disk
|
|
should_flush_logs = self.trainer.logger_connector.should_flush_logs
|
|
if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None:
|
|
self.trainer.logger.save()
|
|
|
|
def prepare_optimizers(self):
|
|
# in manual optimization we loop over all optimizers at once
|
|
optimizers = self.get_optimizers_iterable()
|
|
if not self.automatic_optimization:
|
|
optimizers = [optimizers[0]]
|
|
return optimizers
|
|
|
|
def run_train_split_start(self, split_idx, split_batch, opt_idx, optimizer):
|
|
# set split_idx to trainer for tracking
|
|
self.trainer.split_idx = split_idx
|
|
|
|
# make sure only the gradients of the current optimizer's parameters are calculated
|
|
# in the training step to prevent dangling gradients in multiple-optimizer setup.
|
|
if self.automatic_optimization and len(self.trainer.optimizers) > 1:
|
|
model = self.trainer.lightning_module
|
|
model.toggle_optimizer(optimizer, opt_idx)
|
|
|
|
# use to track metrics internally
|
|
self.trainer.logger_connector.on_train_split_start(split_idx, opt_idx, split_batch)
|
|
|
|
def update_running_loss(self):
|
|
accumulated_loss = self.accumulated_loss.mean()
|
|
|
|
if accumulated_loss is not None:
|
|
# calculate running loss for display
|
|
self.running_loss.append(self.accumulated_loss.mean() * self.trainer.accumulate_grad_batches)
|
|
|
|
# reset for next set of accumulated grads
|
|
self.accumulated_loss.reset()
|