352 lines
13 KiB
Python
352 lines
13 KiB
Python
import ast
|
|
import csv
|
|
import inspect
|
|
import os
|
|
|
|
import torch
|
|
import yaml
|
|
from argparse import Namespace
|
|
from typing import Union, Dict, Any, Optional, Callable, MutableMapping
|
|
|
|
from pytorch_lightning import _logger as log
|
|
from pytorch_lightning.utilities import rank_zero_warn, AttributeDict
|
|
from pytorch_lightning.utilities.cloud_io import load as pl_load
|
|
|
|
PRIMITIVE_TYPES = (bool, int, float, str)
|
|
ALLOWED_CONFIG_TYPES = (AttributeDict, MutableMapping, Namespace)
|
|
try:
|
|
from omegaconf import Container
|
|
except ImportError:
|
|
Container = None
|
|
|
|
# the older shall be on the top
|
|
CHECKPOINT_PAST_HPARAMS_KEYS = (
|
|
'hparams',
|
|
'module_arguments', # used in 0.7.6
|
|
)
|
|
|
|
|
|
class ModelIO(object):
|
|
CHECKPOINT_HYPER_PARAMS_KEY = 'hyper_parameters'
|
|
CHECKPOINT_HYPER_PARAMS_NAME = 'hparams_name'
|
|
CHECKPOINT_HYPER_PARAMS_TYPE = 'hparams_type'
|
|
|
|
@classmethod
|
|
def load_from_checkpoint(
|
|
cls,
|
|
checkpoint_path: str,
|
|
*args,
|
|
map_location: Optional[Union[Dict[str, str], str, torch.device, int, Callable]] = None,
|
|
hparams_file: Optional[str] = None,
|
|
**kwargs
|
|
):
|
|
r"""
|
|
Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint
|
|
it stores the arguments passed to `__init__` in the checkpoint under `module_arguments`
|
|
|
|
Any arguments specified through \*args and \*\*kwargs will override args stored in `hparams`.
|
|
|
|
Args:
|
|
checkpoint_path: Path to checkpoint. This can also be a URL.
|
|
args: Any positional args needed to init the model.
|
|
map_location:
|
|
If your checkpoint saved a GPU model and you now load on CPUs
|
|
or a different number of GPUs, use this to map to the new setup.
|
|
The behaviour is the same as in :func:`torch.load`.
|
|
hparams_file: Optional path to a .yaml file with hierarchical structure
|
|
as in this example::
|
|
|
|
drop_prob: 0.2
|
|
dataloader:
|
|
batch_size: 32
|
|
|
|
You most likely won't need this since Lightning will always save the hyperparameters
|
|
to the checkpoint.
|
|
However, if your checkpoint weights don't have the hyperparameters saved,
|
|
use this method to pass in a .yaml file with the hparams you'd like to use.
|
|
These will be converted into a :class:`~dict` and passed into your
|
|
:class:`LightningModule` for use.
|
|
|
|
If your model's `hparams` argument is :class:`~argparse.Namespace`
|
|
and .yaml file has hierarchical structure, you need to refactor your model to treat
|
|
`hparams` as :class:`~dict`.
|
|
hparam_overrides: A dictionary with keys to override in the hparams
|
|
kwargs: Any keyword args needed to init the model.
|
|
|
|
Return:
|
|
:class:`LightningModule` with loaded weights and hyperparameters (if available).
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
# load weights without mapping ...
|
|
MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt')
|
|
|
|
# or load weights mapping all weights from GPU 1 to GPU 0 ...
|
|
map_location = {'cuda:1':'cuda:0'}
|
|
MyLightningModule.load_from_checkpoint(
|
|
'path/to/checkpoint.ckpt',
|
|
map_location=map_location
|
|
)
|
|
|
|
# or load weights and hyperparameters from separate files.
|
|
MyLightningModule.load_from_checkpoint(
|
|
'path/to/checkpoint.ckpt',
|
|
hparams_file='/path/to/hparams_file.yaml'
|
|
)
|
|
|
|
# override some of the params with new values
|
|
MyLightningModule.load_from_checkpoint(
|
|
PATH,
|
|
num_layers=128,
|
|
pretrained_ckpt_path: NEW_PATH,
|
|
)
|
|
|
|
# predict
|
|
pretrained_model.eval()
|
|
pretrained_model.freeze()
|
|
y_hat = pretrained_model(x)
|
|
"""
|
|
if map_location is not None:
|
|
checkpoint = pl_load(checkpoint_path, map_location=map_location)
|
|
else:
|
|
checkpoint = pl_load(checkpoint_path, map_location=lambda storage, loc: storage)
|
|
|
|
if hparams_file is not None:
|
|
extension = hparams_file.split('.')[-1]
|
|
if extension.lower() in ('csv'):
|
|
hparams = load_hparams_from_tags_csv(hparams_file)
|
|
elif extension.lower() in ('yml', 'yaml'):
|
|
hparams = load_hparams_from_yaml(hparams_file)
|
|
else:
|
|
raise ValueError('.csv, .yml or .yaml is required for `hparams_file`')
|
|
|
|
hparams['on_gpu'] = False
|
|
|
|
# overwrite hparams by the given file
|
|
checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY] = hparams
|
|
|
|
# for past checkpoint need to add the new key
|
|
if cls.CHECKPOINT_HYPER_PARAMS_KEY not in checkpoint:
|
|
checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY] = {}
|
|
# override the hparams with values that were passed in
|
|
checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY].update(kwargs)
|
|
|
|
model = cls._load_model_state(checkpoint, *args, **kwargs)
|
|
return model
|
|
|
|
@classmethod
|
|
def _load_model_state(cls, checkpoint: Dict[str, Any], *cls_args, **cls_kwargs):
|
|
cls_spec = inspect.getfullargspec(cls.__init__)
|
|
cls_init_args_name = inspect.signature(cls).parameters.keys()
|
|
# pass in the values we saved automatically
|
|
if cls.CHECKPOINT_HYPER_PARAMS_KEY in checkpoint:
|
|
model_args = {}
|
|
|
|
# add some back compatibility, the actual one shall be last
|
|
for hparam_key in CHECKPOINT_PAST_HPARAMS_KEYS + (cls.CHECKPOINT_HYPER_PARAMS_KEY,):
|
|
if hparam_key in checkpoint:
|
|
model_args.update(checkpoint[hparam_key])
|
|
|
|
model_args = _convert_loaded_hparams(model_args, checkpoint.get(cls.CHECKPOINT_HYPER_PARAMS_TYPE))
|
|
|
|
args_name = checkpoint.get(cls.CHECKPOINT_HYPER_PARAMS_NAME)
|
|
|
|
if args_name == 'kwargs':
|
|
# in case the class cannot take any extra argument filter only the possible
|
|
cls_kwargs.update(**model_args)
|
|
elif args_name:
|
|
if args_name in cls_init_args_name:
|
|
cls_kwargs.update({args_name: model_args})
|
|
else:
|
|
cls_args = (model_args,) + cls_args
|
|
|
|
if not cls_spec.varkw:
|
|
# filter kwargs according to class init unless it allows any argument via kwargs
|
|
cls_kwargs = {k: v for k, v in cls_kwargs.items() if k in cls_init_args_name}
|
|
|
|
# prevent passing positional arguments if class does not accept any
|
|
if len(cls_spec.args) <= 1 and not cls_spec.kwonlyargs:
|
|
cls_args, cls_kwargs = [], {}
|
|
model = cls(*cls_args, **cls_kwargs)
|
|
# load the state_dict on the model automatically
|
|
model.load_state_dict(checkpoint['state_dict'])
|
|
|
|
# give model a chance to load something
|
|
model.on_load_checkpoint(checkpoint)
|
|
|
|
return model
|
|
|
|
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
|
"""
|
|
Do something with the checkpoint.
|
|
Gives model a chance to load something before ``state_dict`` is restored.
|
|
|
|
Args:
|
|
checkpoint: A dictionary with variables from the checkpoint.
|
|
"""
|
|
|
|
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
|
"""
|
|
Give the model a chance to add something to the checkpoint.
|
|
``state_dict`` is already there.
|
|
|
|
Args:
|
|
checkpoint: A dictionary in which you can save variables to save in a checkpoint.
|
|
Contents need to be pickleable.
|
|
"""
|
|
|
|
# -------------------------
|
|
# OPTIONAL HOOKS
|
|
# -------------------------
|
|
def on_hpc_save(self, checkpoint: Dict[str, Any]) -> None:
|
|
"""
|
|
Hook to do whatever you need right before Slurm manager saves the model.
|
|
|
|
Args:
|
|
checkpoint: A dictionary in which you can save variables to save in a checkpoint.
|
|
Contents need to be pickleable.
|
|
"""
|
|
|
|
def on_hpc_load(self, checkpoint: Dict[str, Any]) -> None:
|
|
"""
|
|
Hook to do whatever you need right before Slurm manager loads the model.
|
|
|
|
Args:
|
|
checkpoint: A dictionary with variables from the checkpoint.
|
|
"""
|
|
|
|
|
|
def _convert_loaded_hparams(model_args: dict, hparams_type: Union[Callable, str] = None) -> object:
|
|
"""Convert hparams according given type in callable or string (past) format"""
|
|
# if not hparams type define
|
|
if not hparams_type:
|
|
return model_args
|
|
# if past checkpoint loaded, convert str to callable
|
|
if isinstance(hparams_type, str):
|
|
hparams_type = AttributeDict
|
|
# convert hparams
|
|
return hparams_type(model_args)
|
|
|
|
|
|
def update_hparams(hparams: dict, updates: dict) -> None:
|
|
"""
|
|
Overrides hparams with new values
|
|
|
|
>>> hparams = {'c': 4}
|
|
>>> update_hparams(hparams, {'a': {'b': 2}, 'c': 1})
|
|
>>> hparams['a']['b'], hparams['c']
|
|
(2, 1)
|
|
>>> update_hparams(hparams, {'a': {'b': 4}, 'c': 7})
|
|
>>> hparams['a']['b'], hparams['c']
|
|
(4, 7)
|
|
|
|
Args:
|
|
hparams: the original params and also target object
|
|
updates: new params to be used as update
|
|
|
|
"""
|
|
for k, v in updates.items():
|
|
# if missing, add the key
|
|
if k not in hparams:
|
|
hparams[k] = v
|
|
continue
|
|
|
|
# recurse if dictionary
|
|
if isinstance(v, dict):
|
|
update_hparams(hparams[k], updates[k])
|
|
else:
|
|
# update the value
|
|
hparams.update({k: v})
|
|
|
|
|
|
def load_hparams_from_tags_csv(tags_csv: str) -> Dict[str, Any]:
|
|
"""Load hparams from a file.
|
|
|
|
>>> hparams = Namespace(batch_size=32, learning_rate=0.001, data_root='./any/path/here')
|
|
>>> path_csv = os.path.join('.', 'testing-hparams.csv')
|
|
>>> save_hparams_to_tags_csv(path_csv, hparams)
|
|
>>> hparams_new = load_hparams_from_tags_csv(path_csv)
|
|
>>> vars(hparams) == hparams_new
|
|
True
|
|
>>> os.remove(path_csv)
|
|
"""
|
|
if not os.path.isfile(tags_csv):
|
|
rank_zero_warn(f'Missing Tags: {tags_csv}.', RuntimeWarning)
|
|
return {}
|
|
|
|
with open(tags_csv) as fp:
|
|
csv_reader = csv.reader(fp, delimiter=',')
|
|
tags = {row[0]: convert(row[1]) for row in list(csv_reader)[1:]}
|
|
|
|
return tags
|
|
|
|
|
|
def save_hparams_to_tags_csv(tags_csv: str, hparams: Union[dict, Namespace]) -> None:
|
|
if not os.path.isdir(os.path.dirname(tags_csv)):
|
|
raise RuntimeError(f'Missing folder: {os.path.dirname(tags_csv)}.')
|
|
|
|
if isinstance(hparams, Namespace):
|
|
hparams = vars(hparams)
|
|
|
|
with open(tags_csv, 'w', newline='') as fp:
|
|
fieldnames = ['key', 'value']
|
|
writer = csv.DictWriter(fp, fieldnames=fieldnames)
|
|
writer.writerow({'key': 'key', 'value': 'value'})
|
|
for k, v in hparams.items():
|
|
writer.writerow({'key': k, 'value': v})
|
|
|
|
|
|
def load_hparams_from_yaml(config_yaml: str) -> Dict[str, Any]:
|
|
"""Load hparams from a file.
|
|
|
|
>>> hparams = Namespace(batch_size=32, learning_rate=0.001, data_root='./any/path/here')
|
|
>>> path_yaml = './testing-hparams.yaml'
|
|
>>> save_hparams_to_yaml(path_yaml, hparams)
|
|
>>> hparams_new = load_hparams_from_yaml(path_yaml)
|
|
>>> vars(hparams) == hparams_new
|
|
True
|
|
>>> os.remove(path_yaml)
|
|
"""
|
|
if not os.path.isfile(config_yaml):
|
|
rank_zero_warn(f'Missing Tags: {config_yaml}.', RuntimeWarning)
|
|
return {}
|
|
|
|
with open(config_yaml) as fp:
|
|
tags = yaml.load(fp, Loader=yaml.SafeLoader)
|
|
|
|
return tags
|
|
|
|
|
|
def save_hparams_to_yaml(config_yaml, hparams: Union[dict, Namespace]) -> None:
|
|
"""
|
|
Args:
|
|
config_yaml: path to new YAML file
|
|
hparams: parameters to be saved
|
|
"""
|
|
if not os.path.isdir(os.path.dirname(config_yaml)):
|
|
raise RuntimeError(f'Missing folder: {os.path.dirname(config_yaml)}.')
|
|
|
|
if Container is not None and isinstance(hparams, Container):
|
|
from omegaconf import OmegaConf
|
|
OmegaConf.save(hparams, config_yaml, resolve=True)
|
|
return
|
|
|
|
# saving the standard way
|
|
if isinstance(hparams, Namespace):
|
|
hparams = vars(hparams)
|
|
elif isinstance(hparams, AttributeDict):
|
|
hparams = dict(hparams)
|
|
assert isinstance(hparams, dict)
|
|
|
|
with open(config_yaml, 'w', newline='') as fp:
|
|
yaml.dump(hparams, fp)
|
|
|
|
|
|
def convert(val: str) -> Union[int, float, bool, str]:
|
|
try:
|
|
return ast.literal_eval(val)
|
|
except (ValueError, SyntaxError) as err:
|
|
log.debug(err)
|
|
return val
|