lightning/pytorch_lightning/callbacks/gradient_accumulation_sched...

58 lines
1.9 KiB
Python

r"""
Gradient Accumulator
====================
Change gradient accumulation factor according to scheduling.
"""
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities import rank_zero_warn
class GradientAccumulationScheduler(Callback):
r"""
Change gradient accumulation factor according to scheduling.
Args:
scheduling: scheduling in format {epoch: accumulation_factor}
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import GradientAccumulationScheduler
# at epoch 5 start accumulating every 2 batches
>>> accumulator = GradientAccumulationScheduler(scheduling={5: 2})
>>> trainer = Trainer(callbacks=[accumulator])
# alternatively, pass the scheduling dict directly to the Trainer
>>> trainer = Trainer(accumulate_grad_batches={5: 2})
"""
def __init__(self, scheduling: dict):
super().__init__()
if not scheduling: # empty dict error
raise TypeError("Empty dict cannot be interpreted correct")
for key in scheduling:
if not isinstance(key, int) or not isinstance(scheduling[key], int):
raise TypeError("All epoches and accumulation factor must be integers")
minimal_epoch = min(scheduling.keys())
if minimal_epoch < 0:
raise IndexError(f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct")
if minimal_epoch != 0: # if user didnt define first epoch accumulation factor
scheduling.update({0: 1})
self.scheduling = scheduling
self.epochs = sorted(scheduling.keys())
def on_epoch_start(self, trainer, pl_module):
epoch = trainer.current_epoch
for i in reversed(range(len(self.epochs))):
if epoch >= self.epochs[i]:
trainer.accumulate_grad_batches = self.scheduling.get(self.epochs[i])
break