lightning/tests
Rohit Gupta a3def9d228
Use a unique filename to save temp ckpt in tuner (#9682)
* unique filename

* chlog

* update tests
2021-09-25 11:28:51 +00:00
..
accelerators Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
base Keep global step update in the loop (#8856) 2021-09-14 19:21:39 +05:30
callbacks Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
checkpointing Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
core Fix `ResultCollection._get_cache` with multielement tensors (#9582) 2021-09-22 14:03:20 +01:00
deprecated_api Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
helpers CI: precommit - docformatter (#8584) 2021-09-06 12:49:09 +00:00
loggers Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
loops Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
models Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
overrides scheduled removal of auto_move_data decorator (#9231) 2021-09-03 00:54:36 +02:00
plugins Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
profiler Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
trainer Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
tuner Use a unique filename to save temp ckpt in tuner (#9682) 2021-09-25 11:28:51 +00:00
utilities Add `enable_progress_bar` to Trainer constructor (#9664) 2021-09-24 22:53:31 -07:00
README.md
__init__.py
conftest.py Report leaking environment variables in tests (#5872) 2021-09-24 12:39:57 +02:00
mnode_tests.txt
special_tests.sh Skip reconciliate_processes if used within a cluster environment that creates processes externally (#9389) 2021-09-15 11:54:17 +01:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have at least 2 GPUs to run distributed tests.

Note that this setup will not run tests that require specific packages installed such as Horovod, FairScale, NVIDIA/apex, NVIDIA/DALI, etc. You can rely on our CI to make sure all these tests pass.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.9 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.9 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.9 bash
docker image rm pytorch_lightning:devel-torch1.9