lightning/docs/source-pytorch/visualize/logging_intermediate.rst

70 lines
2.0 KiB
ReStructuredText

.. _logging_intermediate:
##############################################
Track and Visualize Experiments (intermediate)
##############################################
**Audience:** Users who want to track more complex outputs and use third-party experiment managers.
----
*******************************
Track audio and other artifacts
*******************************
To track other artifacts, such as histograms or model topology graphs first select one of the many loggers supported by Lightning
.. code-block:: python
from pytorch_lightning import loggers as pl_loggers
tensorboard = pl_loggers.TensorBoardLogger(save_dir="")
trainer = Trainer(logger=tensorboard)
then access the logger's API directly
.. code-block:: python
def training_step(self):
tensorboard = self.logger.experiment
tensorboard.add_image()
tensorboard.add_histogram(...)
tensorboard.add_figure(...)
----
.. include:: supported_exp_managers.rst
----
*********************
Track hyperparameters
*********************
To track hyperparameters, first call *save_hyperparameters* from the LightningModule init:
.. code-block:: python
class MyLightningModule(LightningModule):
def __init__(self, learning_rate, another_parameter, *args, **kwargs):
super().__init__()
self.save_hyperparameters()
If your logger supports tracked hyperparameters, the hyperparameters will automatically show up on the logger dashboard.
TODO: show tracked hyperparameters.
----
********************
Track model topology
********************
Multiple loggers support visualizing the model topology. Here's an example that tracks the model topology using Tensorboard.
.. code-block:: python
def any_lightning_module_function_or_hook(self):
tensorboard_logger = self.logger.experiment
prototype_array = torch.Tensor(32, 1, 28, 27)
tensorboard_logger.log_graph(model=self, input_array=prototype_array)
TODO: show tensorboard topology.