lightning/pytorch_lightning/plugins/precision/ipu_precision.py

58 lines
2.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional, Union
from torch.nn import Module
from torch.optim import Optimizer
import pytorch_lightning as pl
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
from pytorch_lightning.utilities import GradClipAlgorithmType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.warnings import WarningCache
warning_cache = WarningCache()
class IPUPrecisionPlugin(PrecisionPlugin):
def __init__(self, precision: int) -> None:
super().__init__()
self.precision = precision
def backward(self, model: 'pl.LightningModule', *args: Any, **kwargs: Any) -> None:
if is_overridden('backward', model):
warning_cache.warn(
"You have overridden the `LightningModule.backward` hook but it will be ignored since IPUs handle"
" the backward logic internally."
)
def clip_gradients(
self,
optimizer: Optimizer,
clip_val: Union[int, float],
gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM,
model: Optional[Module] = None
) -> None:
"""Clips the gradients"""
if clip_val is None:
return
clip_val = float(clip_val)
if clip_val <= 0:
return
raise MisconfigurationException("IPUs currently do not support clipping gradients.")