lightning/pytorch_lightning/plugins/precision/double.py

140 lines
5.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from typing import Any, cast, Generator, List, Tuple
import torch
import torch.nn as nn
from torch.optim import Optimizer
import pytorch_lightning as pl
from pytorch_lightning.overrides.base import _LightningPrecisionModuleWrapperBase
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
from pytorch_lightning.utilities.apply_func import apply_to_collection
class LightningDoublePrecisionModule(_LightningPrecisionModuleWrapperBase):
"""
LightningModule wrapper which converts incoming floating point data in ``*_step`` and ``forward`` to double
(``torch.float64``) precision.
Args:
pl_module: the model to wrap
"""
@staticmethod
def _to_double_precision(data: torch.Tensor) -> torch.Tensor:
if data.is_floating_point():
return data.double()
return data
@staticmethod
def _move_float_tensors_to_double(collection: Any) -> Any:
return apply_to_collection(
collection,
torch.Tensor,
LightningDoublePrecisionModule._to_double_precision,
)
def training_step(self, *args: Any, **kwargs: Any) -> Any:
return self.module.training_step(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
def validation_step(self, *args: Any, **kwargs: Any) -> Any:
return self.module.validation_step(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
def test_step(self, *args: Any, **kwargs: Any) -> Any:
return self.module.test_step(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
def predict_step(self, *args: Any, **kwargs: Any) -> Any:
return self.module.predict_step(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
def forward(self, *args: Any, **kwargs: Any) -> Any:
return self.module(
*LightningDoublePrecisionModule._move_float_tensors_to_double(args),
**LightningDoublePrecisionModule._move_float_tensors_to_double(kwargs),
)
class DoublePrecisionPlugin(PrecisionPlugin):
""" Plugin for training with double (``torch.float64``) precision. """
precision: int = 64
def connect(
self,
model: nn.Module,
optimizers: List[Optimizer],
lr_schedulers: List[Any],
) -> Tuple[nn.Module, List['Optimizer'], List[Any]]:
"""Converts the model to double precision and wraps it in a ``LightningDoublePrecisionModule`` to convert
incoming floating point data to double (``torch.float64``) precision. Does not alter `optimizers` or
`lr_schedulers`.
"""
model = cast(pl.LightningModule, model.double())
model = LightningDoublePrecisionModule(model)
return super().connect(model, optimizers, lr_schedulers)
@contextmanager
def train_step_context(self) -> Generator[None, None, None]:
"""
A context manager to change the default tensor type.
See: :meth:`torch.set_default_tensor_type`
"""
torch.set_default_tensor_type(torch.DoubleTensor)
yield
torch.set_default_tensor_type(torch.FloatTensor)
@contextmanager
def val_step_context(self) -> Generator[None, None, None]:
"""
A context manager to change the default tensor type.
See: :meth:`torch.set_default_tensor_type`
"""
torch.set_default_tensor_type(torch.DoubleTensor)
yield
torch.set_default_tensor_type(torch.FloatTensor)
@contextmanager
def test_step_context(self) -> Generator[None, None, None]:
"""
A context manager to change the default tensor type.
See: :meth:`torch.set_default_tensor_type`
"""
torch.set_default_tensor_type(torch.DoubleTensor)
yield
torch.set_default_tensor_type(torch.FloatTensor)
@contextmanager
def predict_step_context(self) -> Generator[None, None, None]:
"""
A context manager to change the default tensor type.
See: :meth:`torch.set_default_tensor_type`
"""
torch.set_default_tensor_type(torch.DoubleTensor)
yield
torch.set_default_tensor_type(torch.FloatTensor)