217 lines
6.9 KiB
Python
217 lines
6.9 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import optim
|
|
|
|
import tests.base.develop_pipelines as tpipes
|
|
import tests.base.develop_utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.trainer.states import TrainerState
|
|
from pytorch_lightning.utilities import _APEX_AVAILABLE
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
@pytest.mark.skip(reason='dp + amp not supported currently') # TODO
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
def test_amp_single_gpu_dp(tmpdir):
|
|
"""Make sure DP/DDP + AMP work."""
|
|
tutils.reset_seed()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
gpus=1,
|
|
accelerator='dp',
|
|
precision=16,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
# tutils.run_model_test(trainer_options, model)
|
|
trainer.fit(model)
|
|
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
def test_amp_single_gpu_ddp_spawn(tmpdir):
|
|
"""Make sure DP/DDP + AMP work."""
|
|
tutils.reset_seed()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
gpus=1,
|
|
accelerator='ddp_spawn',
|
|
precision=16,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
# tutils.run_model_test(trainer_options, model)
|
|
trainer.fit(model)
|
|
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
|
|
@pytest.mark.skip(reason='dp + amp not supported currently') # TODO
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
def test_amp_multi_gpu_dp(tmpdir):
|
|
"""Make sure DP/DDP + AMP work."""
|
|
tutils.reset_seed()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
gpus=2,
|
|
accelerator='dp',
|
|
precision=16,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
# tutils.run_model_test(trainer_options, model)
|
|
trainer.fit(model)
|
|
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_amp_multi_gpu_ddp_spawn(tmpdir):
|
|
"""Make sure DP/DDP + AMP work."""
|
|
tutils.reset_seed()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
gpus=2,
|
|
accelerator='ddp_spawn',
|
|
precision=16,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
# tutils.run_model_test(trainer_options, model)
|
|
trainer.fit(model)
|
|
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_amp_gpu_ddp_slurm_managed(tmpdir):
|
|
"""Make sure DDP + AMP work."""
|
|
# simulate setting slurm flags
|
|
tutils.set_random_master_port()
|
|
os.environ['SLURM_LOCALID'] = str(0)
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# exp file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# exp file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
gpus=[0],
|
|
accelerator='ddp_spawn',
|
|
precision=16,
|
|
callbacks=[checkpoint],
|
|
logger=logger,
|
|
)
|
|
trainer.is_slurm_managing_tasks = True
|
|
trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert trainer.state == TrainerState.FINISHED, 'amp + ddp model failed to complete'
|
|
|
|
# test root model address
|
|
assert trainer.slurm_connector.resolve_root_node_address('abc') == 'abc'
|
|
assert trainer.slurm_connector.resolve_root_node_address('abc[23]') == 'abc23'
|
|
assert trainer.slurm_connector.resolve_root_node_address('abc[23-24]') == 'abc23'
|
|
assert trainer.slurm_connector.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
|
|
|
|
|
|
def test_cpu_model_with_amp(tmpdir):
|
|
"""Make sure model trains on CPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
precision=16,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
|
|
def test_amp_without_apex(tmpdir):
|
|
"""Check that even with apex amp type without requesting precision=16 the amp backend is void."""
|
|
model = EvalModelTemplate()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
amp_backend='native',
|
|
)
|
|
assert trainer.amp_backend is None
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
amp_backend='apex',
|
|
)
|
|
assert trainer.amp_backend is None
|
|
trainer.fit(model)
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
assert trainer.dev_debugger.count_events('AMP') == 0
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
@pytest.mark.skipif(not _APEX_AVAILABLE, reason="test requires apex")
|
|
def test_amp_with_apex(tmpdir):
|
|
"""Check calling apex scaling in training."""
|
|
|
|
class CustomModel(EvalModelTemplate):
|
|
|
|
def configure_optimizers(self):
|
|
optimizer1 = optim.Adam(self.parameters(), lr=self.learning_rate)
|
|
optimizer2 = optim.SGD(self.parameters(), lr=self.learning_rate)
|
|
lr_scheduler1 = optim.lr_scheduler.StepLR(optimizer1, 1, gamma=0.1)
|
|
lr_scheduler2 = optim.lr_scheduler.StepLR(optimizer2, 1, gamma=0.1)
|
|
return [optimizer1, optimizer2], [lr_scheduler1, lr_scheduler2]
|
|
|
|
model = CustomModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
precision=16,
|
|
amp_backend='apex',
|
|
gpus=1,
|
|
)
|
|
assert str(trainer.amp_backend) == "AMPType.APEX"
|
|
trainer.fit(model)
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
assert trainer.dev_debugger.count_events('AMP') == 20
|
|
|
|
assert isinstance(trainer.lr_schedulers[0]['scheduler'].optimizer, optim.Adam)
|
|
assert isinstance(trainer.lr_schedulers[1]['scheduler'].optimizer, optim.SGD)
|