lightning/tests/accelerators/legacy/test_dp.py

98 lines
2.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
import pytorch_lightning as pl
import tests.base.develop_pipelines as tpipes
import tests.base.develop_utils as tutils
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.core import memory
from tests.base import EvalModelTemplate
PRETEND_N_OF_GPUS = 16
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_early_stop_dp(tmpdir):
"""Make sure DDP works. with early stopping"""
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
callbacks=[EarlyStopping()],
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
accelerator='dp',
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_dp(tmpdir):
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
accelerator='dp',
progress_bar_refresh_rate=0,
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
# test memory helper functions
memory.get_memory_profile('min_max')
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_dp_test(tmpdir):
tutils.set_random_master_port()
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
model = EvalModelTemplate()
trainer = pl.Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
accelerator='dp',
)
trainer.fit(model)
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
results = trainer.test()
assert 'test_acc' in results[0]
old_weights = model.c_d1.weight.clone().detach().cpu()
results = trainer.test(model)
assert 'test_acc' in results[0]
# make sure weights didn't change
new_weights = model.c_d1.weight.clone().detach().cpu()
assert torch.all(torch.eq(old_weights, new_weights))