98 lines
2.8 KiB
Python
98 lines
2.8 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytest
|
|
import torch
|
|
|
|
import pytorch_lightning as pl
|
|
import tests.base.develop_pipelines as tpipes
|
|
import tests.base.develop_utils as tutils
|
|
from pytorch_lightning.callbacks import EarlyStopping
|
|
from pytorch_lightning.core import memory
|
|
from tests.base import EvalModelTemplate
|
|
|
|
PRETEND_N_OF_GPUS = 16
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_multi_gpu_early_stop_dp(tmpdir):
|
|
"""Make sure DDP works. with early stopping"""
|
|
tutils.set_random_master_port()
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[EarlyStopping()],
|
|
max_epochs=50,
|
|
limit_train_batches=10,
|
|
limit_val_batches=10,
|
|
gpus=[0, 1],
|
|
accelerator='dp',
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test(trainer_options, model)
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_multi_gpu_model_dp(tmpdir):
|
|
tutils.set_random_master_port()
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=10,
|
|
limit_val_batches=10,
|
|
gpus=[0, 1],
|
|
accelerator='dp',
|
|
progress_bar_refresh_rate=0,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
tpipes.run_model_test(trainer_options, model)
|
|
|
|
# test memory helper functions
|
|
memory.get_memory_profile('min_max')
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_dp_test(tmpdir):
|
|
tutils.set_random_master_port()
|
|
|
|
import os
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
|
|
|
|
model = EvalModelTemplate()
|
|
trainer = pl.Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
limit_train_batches=10,
|
|
limit_val_batches=10,
|
|
gpus=[0, 1],
|
|
accelerator='dp',
|
|
)
|
|
trainer.fit(model)
|
|
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
|
|
results = trainer.test()
|
|
assert 'test_acc' in results[0]
|
|
|
|
old_weights = model.c_d1.weight.clone().detach().cpu()
|
|
|
|
results = trainer.test(model)
|
|
assert 'test_acc' in results[0]
|
|
|
|
# make sure weights didn't change
|
|
new_weights = model.c_d1.weight.clone().detach().cpu()
|
|
|
|
assert torch.all(torch.eq(old_weights, new_weights))
|