110 lines
4.2 KiB
Python
110 lines
4.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from unittest.mock import patch, MagicMock
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.loggers import NeptuneLogger
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
@patch('pytorch_lightning.loggers.neptune.neptune')
|
|
def test_neptune_online(neptune):
|
|
logger = NeptuneLogger(api_key='test', project_name='project')
|
|
|
|
created_experiment = neptune.Session.with_default_backend().get_project().create_experiment()
|
|
|
|
# It's important to check if the internal variable _experiment was initialized in __init__.
|
|
# Calling logger.experiment would cause a side-effect of initializing _experiment,
|
|
# if it wasn't already initialized.
|
|
assert logger._experiment == created_experiment
|
|
assert logger.name == created_experiment.name
|
|
assert logger.version == created_experiment.id
|
|
|
|
|
|
@patch('pytorch_lightning.loggers.neptune.neptune')
|
|
def test_neptune_offline(neptune):
|
|
logger = NeptuneLogger(offline_mode=True)
|
|
|
|
neptune.Session.assert_called_once_with(backend=neptune.OfflineBackend())
|
|
assert logger.experiment == neptune.Session().get_project().create_experiment()
|
|
|
|
|
|
@patch('pytorch_lightning.loggers.neptune.neptune')
|
|
def test_neptune_additional_methods(neptune):
|
|
logger = NeptuneLogger(api_key='test', project_name='project')
|
|
|
|
created_experiment = neptune.Session.with_default_backend().get_project().create_experiment()
|
|
|
|
logger.log_metric('test', torch.ones(1))
|
|
created_experiment.log_metric.assert_called_once_with('test', torch.ones(1))
|
|
created_experiment.log_metric.reset_mock()
|
|
|
|
logger.log_metric('test', 1.0)
|
|
created_experiment.log_metric.assert_called_once_with('test', 1.0)
|
|
created_experiment.log_metric.reset_mock()
|
|
|
|
logger.log_metric('test', 1.0, step=2)
|
|
created_experiment.log_metric.assert_called_once_with('test', x=2, y=1.0)
|
|
created_experiment.log_metric.reset_mock()
|
|
|
|
logger.log_text('test', 'text')
|
|
created_experiment.log_metric.assert_called_once_with('test', 'text')
|
|
created_experiment.log_metric.reset_mock()
|
|
|
|
logger.log_image('test', 'image file')
|
|
created_experiment.log_image.assert_called_once_with('test', 'image file')
|
|
created_experiment.log_image.reset_mock()
|
|
|
|
logger.log_image('test', 'image file', step=2)
|
|
created_experiment.log_image.assert_called_once_with('test', x=2, y='image file')
|
|
created_experiment.log_image.reset_mock()
|
|
|
|
logger.log_artifact('file')
|
|
created_experiment.log_artifact.assert_called_once_with('file', None)
|
|
|
|
logger.set_property('property', 10)
|
|
created_experiment.set_property.assert_called_once_with('property', 10)
|
|
|
|
logger.append_tags('one tag')
|
|
created_experiment.append_tags.assert_called_once_with('one tag')
|
|
created_experiment.append_tags.reset_mock()
|
|
|
|
logger.append_tags(['two', 'tags'])
|
|
created_experiment.append_tags.assert_called_once_with('two', 'tags')
|
|
|
|
|
|
@patch('pytorch_lightning.loggers.neptune.neptune')
|
|
def test_neptune_leave_open_experiment_after_fit(neptune, tmpdir):
|
|
"""Verify that neptune experiment was closed after training"""
|
|
model = EvalModelTemplate()
|
|
|
|
def _run_training(logger):
|
|
logger._experiment = MagicMock()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=0.05,
|
|
logger=logger,
|
|
)
|
|
trainer.fit(model)
|
|
return logger
|
|
|
|
logger_close_after_fit = _run_training(NeptuneLogger(offline_mode=True))
|
|
assert logger_close_after_fit._experiment.stop.call_count == 1
|
|
|
|
logger_open_after_fit = _run_training(NeptuneLogger(offline_mode=True, close_after_fit=False))
|
|
assert logger_open_after_fit._experiment.stop.call_count == 0
|