lightning/pytorch_lightning/utilities/apply_func.py

125 lines
4.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from abc import ABC
from collections.abc import Mapping, Sequence
from copy import copy
from typing import Any, Callable, Union
import torch
TORCHTEXT_AVAILABLE = importlib.util.find_spec("torchtext") is not None
if TORCHTEXT_AVAILABLE:
from torchtext.data import Batch
else:
Batch = type(None)
def apply_to_collection(data: Any, dtype: Union[type, tuple], function: Callable, *args, **kwargs) -> Any:
"""
Recursively applies a function to all elements of a certain dtype.
Args:
data: the collection to apply the function to
dtype: the given function will be applied to all elements of this dtype
function: the function to apply
*args: positional arguments (will be forwarded to calls of ``function``)
**kwargs: keyword arguments (will be forwarded to calls of ``function``)
Returns:
the resulting collection
"""
elem_type = type(data)
# Breaking condition
if isinstance(data, dtype):
return function(data, *args, **kwargs)
# Recursively apply to collection items
elif isinstance(data, Mapping):
return elem_type({k: apply_to_collection(v, dtype, function, *args, **kwargs)
for k, v in data.items()})
elif isinstance(data, tuple) and hasattr(data, '_fields'): # named tuple
return elem_type(*(apply_to_collection(d, dtype, function, *args, **kwargs) for d in data))
elif isinstance(data, Sequence) and not isinstance(data, str):
return elem_type([apply_to_collection(d, dtype, function, *args, **kwargs) for d in data])
# data is neither of dtype, nor a collection
return data
class TransferableDataType(ABC):
"""
A custom type for data that can be moved to a torch device via `.to(...)`.
Example:
>>> isinstance(dict, TransferableDataType)
False
>>> isinstance(torch.rand(2, 3), TransferableDataType)
True
>>> class CustomObject:
... def __init__(self):
... self.x = torch.rand(2, 2)
... def to(self, device):
... self.x = self.x.to(device)
... return self
>>> isinstance(CustomObject(), TransferableDataType)
True
"""
@classmethod
def __subclasshook__(cls, subclass):
if cls is TransferableDataType:
to = getattr(subclass, "to", None)
return callable(to)
return NotImplemented
def move_data_to_device(batch: Any, device: torch.device):
"""
Transfers a collection of data to the given device. Any object that defines a method
``to(device)`` will be moved and all other objects in the collection will be left untouched.
Args:
batch: A tensor or collection of tensors or anything that has a method `.to(...)`.
See :func:`apply_to_collection` for a list of supported collection types.
device: The device to which the data should be moved
Return:
the same collection but with all contained tensors residing on the new device.
See Also:
- :meth:`torch.Tensor.to`
- :class:`torch.device`
"""
def batch_to(data):
# try to move torchtext data first
if TORCHTEXT_AVAILABLE and isinstance(data, Batch):
# Shallow copy because each Batch has a reference to Dataset which contains all examples
device_data = copy(data)
for field in data.fields:
device_field = move_data_to_device(getattr(data, field), device)
setattr(device_data, field, device_field)
return device_data
kwargs = dict(non_blocking=True) if isinstance(data, torch.Tensor) else {}
return data.to(device, **kwargs)
return apply_to_collection(batch, dtype=(TransferableDataType, Batch), function=batch_to)