lightning/examples/fabric/dcgan/train_torch.py

277 lines
9.2 KiB
Python

"""
DCGAN - Raw PyTorch Implementation
Code adapted from the official PyTorch DCGAN tutorial:
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
"""
import os
import random
import time
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.utils
from torchvision.datasets import CelebA
# Root directory for dataset
dataroot = "data/"
# Number of workers for dataloader
workers = os.cpu_count()
# Batch size during training
batch_size = 128
# Spatial size of training images
image_size = 64
# Number of channels in the training images
nc = 3
# Size of z latent vector (i.e. size of generator input)
nz = 100
# Size of feature maps in generator
ngf = 64
# Size of feature maps in discriminator
ndf = 64
# Number of training epochs
num_epochs = 5
# Learning rate for optimizers
lr = 0.0002
# Beta1 hyperparameter for Adam optimizers
beta1 = 0.5
# Number of GPUs to use
num_gpus = 1
def main():
# Set random seed for reproducibility
seed = 999
print("Random Seed: ", seed)
random.seed(seed)
torch.manual_seed(seed)
dataset = CelebA(
root=dataroot,
split="all",
download=True,
transform=transforms.Compose(
[
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
),
)
# Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=workers)
# Decide which device we want to run on
if torch.cuda.is_available() and num_gpus > 0:
device = torch.device("cuda:0")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
output_dir = Path("outputs-torch", time.strftime("%Y%m%d-%H%M%S"))
output_dir.mkdir(parents=True, exist_ok=True)
# Plot some training images
real_batch = next(iter(dataloader))
torchvision.utils.save_image(
real_batch[0][:64],
output_dir / "sample-data.png",
padding=2,
normalize=True,
)
# Create the generator
generator = Generator().to(device)
# Handle multi-gpu if desired
if (device.type == "cuda") and (num_gpus > 1):
generator = nn.DataParallel(generator, list(range(num_gpus)))
# Apply the weights_init function to randomly initialize all weights
generator.apply(weights_init)
# Create the Discriminator
discriminator = Discriminator().to(device)
# Handle multi-gpu if desired
if (device.type == "cuda") and (num_gpus > 1):
discriminator = nn.DataParallel(discriminator, list(range(num_gpus)))
# Apply the weights_init function to randomly initialize all weights
discriminator.apply(weights_init)
# Initialize BCELoss function
criterion = nn.BCELoss()
# Create batch of latent vectors that we will use to visualize
# the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
# Establish convention for real and fake labels during training
real_label = 1.0
fake_label = 0.0
# Set up Adam optimizers for both G and D
optimizer_d = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
optimizer_g = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
# Lists to keep track of progress
losses_g = []
losses_d = []
iteration = 0
# Training loop
for epoch in range(num_epochs):
for i, data in enumerate(dataloader, 0):
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
# (a) Train with all-real batch
discriminator.zero_grad()
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
# Forward pass real batch through D
output = discriminator(real_cpu).view(-1)
# Calculate loss on all-real batch
err_d_real = criterion(output, label)
# Calculate gradients for D in backward pass
err_d_real.backward()
d_x = output.mean().item()
# (b) Train with all-fake batch
# Generate batch of latent vectors
noise = torch.randn(b_size, nz, 1, 1, device=device)
# Generate fake image batch with G
fake = generator(noise)
label.fill_(fake_label)
# Classify all fake batch with D
output = discriminator(fake.detach()).view(-1)
# Calculate D's loss on the all-fake batch
err_d_fake = criterion(output, label)
# Calculate the gradients for this batch, accumulated (summed) with previous gradients
err_d_fake.backward()
d_g_z1 = output.mean().item()
# Compute error of D as sum over the fake and the real batches
err_d = err_d_real + err_d_fake
# Update D
optimizer_d.step()
# (2) Update G network: maximize log(D(G(z)))
generator.zero_grad()
label.fill_(real_label) # fake labels are real for generator cost
# Since we just updated D, perform another forward pass of all-fake batch through D
output = discriminator(fake).view(-1)
# Calculate G's loss based on this output
err_g = criterion(output, label)
# Calculate gradients for G
err_g.backward()
d_g_z2 = output.mean().item()
# Update G
optimizer_g.step()
# Output training stats
if i % 50 == 0:
print(
f"[{epoch}/{num_epochs}][{i}/{len(dataloader)}]\t"
f"Loss_D: {err_d.item():.4f}\t"
f"Loss_G: {err_g.item():.4f}\t"
f"D(x): {d_x:.4f}\t"
f"D(G(z)): {d_g_z1:.4f} / {d_g_z2:.4f}"
)
# Save Losses for plotting later
losses_g.append(err_g.item())
losses_d.append(err_d.item())
# Check how the generator is doing by saving G's output on fixed_noise
if (iteration % 500 == 0) or ((epoch == num_epochs - 1) and (i == len(dataloader) - 1)):
with torch.no_grad():
fake = generator(fixed_noise).detach().cpu()
torchvision.utils.save_image(
fake,
output_dir / f"fake-{iteration:04d}.png",
padding=2,
normalize=True,
)
iteration += 1
def weights_init(m):
# custom weights initialization called on netG and netD
classname = m.__class__.__name__
if classname.find("Conv") != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
return self.main(input)
class Discriminator(nn.Module):
def __init__(self):
super().__init__()
self.main = nn.Sequential(
# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid(),
)
def forward(self, input):
return self.main(input)
if __name__ == "__main__":
main()