lightning/.azure-pipelines/gpu-benchmark.yml

48 lines
1.3 KiB
YAML

# Python package
# Create and test a Python package on multiple Python versions.
# Add steps that analyze code, save the dist with the build record, publish to a PyPI-compatible index, and more:
# https://docs.microsoft.com/azure/devops/pipelines/languages/python
trigger:
tags:
include:
- '*'
branches:
include:
- "master"
- "release/*"
- "refs/tags/*"
pr: none
schedules:
- cron: "0 0 * * *" # At the end of every day
displayName: Daily midnight benchmark
branches:
include:
- "master"
jobs:
- job: benchmarks
timeoutInMinutes: "90"
cancelTimeoutInMinutes: "2"
pool: azure-gpus-spot
container:
image: "pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.8"
options: "--runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all --shm-size=32g"
workspace:
clean: all
steps:
- bash: |
# TODO: Prepare a docker image with 1.8.2 (LTS) installed and remove manual installation.
pip install torch==1.8.2+cu102 torchvision==0.9.2+cu102 torchtext==0.9.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
pip list
displayName: 'Install PyTorch LTS'
- bash: |
python -m pytest tests/benchmarks -v --durations=0
displayName: 'Testing: benchmarks'
env:
PL_RUNNING_BENCHMARKS: 1