819 lines
26 KiB
Python
819 lines
26 KiB
Python
from typing import Any, Optional, Sequence, Tuple
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning.metrics.functional.classification import (
|
|
accuracy,
|
|
confusion_matrix,
|
|
precision_recall_curve,
|
|
precision,
|
|
recall,
|
|
average_precision,
|
|
auroc,
|
|
fbeta_score,
|
|
f1_score,
|
|
roc,
|
|
multiclass_roc,
|
|
multiclass_precision_recall_curve,
|
|
dice_score,
|
|
iou,
|
|
)
|
|
from pytorch_lightning.metrics.metric import TensorMetric, TensorCollectionMetric
|
|
|
|
|
|
class Accuracy(TensorMetric):
|
|
"""
|
|
Computes the accuracy classification score
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = Accuracy()
|
|
>>> metric(pred, target)
|
|
tensor(0.7500)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_classes: Optional[int] = None,
|
|
reduction: str = 'elementwise_mean',
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
num_classes: number of classes
|
|
reduction: a method for reducing accuracies over labels (default: takes the mean)
|
|
Available reduction methods:
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='accuracy',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
self.num_classes = num_classes
|
|
self.reduction = reduction
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: ground truth labels
|
|
|
|
Return:
|
|
A Tensor with the classification score.
|
|
"""
|
|
return accuracy(pred=pred, target=target,
|
|
num_classes=self.num_classes, reduction=self.reduction)
|
|
|
|
|
|
class ConfusionMatrix(TensorMetric):
|
|
"""
|
|
Computes the confusion matrix C where each entry C_{i,j} is the number of observations
|
|
in group i that were predicted in group j.
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 2])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = ConfusionMatrix()
|
|
>>> metric(pred, target)
|
|
tensor([[1., 0., 0.],
|
|
[0., 1., 0.],
|
|
[0., 0., 2.]])
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
normalize: bool = False,
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
normalize: whether to compute a normalized confusion matrix
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='confusion_matrix',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
self.normalize = normalize
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: ground truth labels
|
|
|
|
Return:
|
|
A Tensor with the confusion matrix.
|
|
"""
|
|
return confusion_matrix(pred=pred, target=target,
|
|
normalize=self.normalize)
|
|
|
|
|
|
class PrecisionRecall(TensorCollectionMetric):
|
|
"""
|
|
Computes the precision recall curve
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = PrecisionRecall()
|
|
>>> prec, recall, thr = metric(pred, target)
|
|
>>> prec
|
|
tensor([0.3333, 0.0000, 0.0000, 1.0000])
|
|
>>> recall
|
|
tensor([1., 0., 0., 0.])
|
|
>>> thr
|
|
tensor([1., 2., 3.])
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
pos_label: int = 1,
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
pos_label: positive label indicator
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='precision_recall_curve',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.pos_label = pos_label
|
|
|
|
def forward(
|
|
self,
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
sample_weight: Optional[Sequence] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: groundtruth labels
|
|
sample_weight: the weights per sample
|
|
|
|
Return:
|
|
- precision values
|
|
- recall values
|
|
- threshold values
|
|
"""
|
|
return precision_recall_curve(pred=pred, target=target,
|
|
sample_weight=sample_weight,
|
|
pos_label=self.pos_label)
|
|
|
|
|
|
class Precision(TensorMetric):
|
|
"""
|
|
Computes the precision score
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = Precision(num_classes=4)
|
|
>>> metric(pred, target)
|
|
tensor(0.7500)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_classes: Optional[int] = None,
|
|
reduction: str = 'elementwise_mean',
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
num_classes: number of classes
|
|
reduction: a method for reducing accuracies over labels (default: takes the mean)
|
|
Available reduction methods:
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='precision',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
self.num_classes = num_classes
|
|
self.reduction = reduction
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: ground truth labels
|
|
|
|
Return:
|
|
A Tensor with the classification score.
|
|
"""
|
|
return precision(pred=pred, target=target,
|
|
num_classes=self.num_classes,
|
|
reduction=self.reduction)
|
|
|
|
|
|
class Recall(TensorMetric):
|
|
"""
|
|
Computes the recall score
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = Recall()
|
|
>>> metric(pred, target)
|
|
tensor(0.6250)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_classes: Optional[int] = None,
|
|
reduction: str = 'elementwise_mean',
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
num_classes: number of classes
|
|
reduction: a method for reducing accuracies over labels (default: takes the mean)
|
|
Available reduction methods:
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='recall',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.num_classes = num_classes
|
|
self.reduction = reduction
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: ground truth labels
|
|
|
|
Return:
|
|
A Tensor with the classification score.
|
|
"""
|
|
return recall(pred=pred,
|
|
target=target,
|
|
num_classes=self.num_classes,
|
|
reduction=self.reduction)
|
|
|
|
|
|
class AveragePrecision(TensorMetric):
|
|
"""
|
|
Computes the average precision score
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = AveragePrecision()
|
|
>>> metric(pred, target)
|
|
tensor(0.3333)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
pos_label: int = 1,
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
pos_label: positive label indicator
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='AP',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.pos_label = pos_label
|
|
|
|
def forward(
|
|
self,
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
sample_weight: Optional[Sequence] = None
|
|
) -> torch.Tensor:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: groundtruth labels
|
|
sample_weight: the weights per sample
|
|
|
|
Return:
|
|
torch.Tensor: classification score
|
|
"""
|
|
return average_precision(pred=pred, target=target,
|
|
sample_weight=sample_weight,
|
|
pos_label=self.pos_label)
|
|
|
|
|
|
class AUROC(TensorMetric):
|
|
"""
|
|
Computes the area under curve (AUC) of the receiver operator characteristic (ROC)
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = AUROC()
|
|
>>> metric(pred, target)
|
|
tensor(0.3333)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
pos_label: int = 1,
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
pos_label: positive label indicator
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='auroc',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.pos_label = pos_label
|
|
|
|
def forward(
|
|
self,
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
sample_weight: Optional[Sequence] = None
|
|
) -> torch.Tensor:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: groundtruth labels
|
|
sample_weight: the weights per sample
|
|
|
|
Return:
|
|
torch.Tensor: classification score
|
|
"""
|
|
return auroc(pred=pred, target=target,
|
|
sample_weight=sample_weight,
|
|
pos_label=self.pos_label)
|
|
|
|
|
|
class FBeta(TensorMetric):
|
|
"""
|
|
Computes the FBeta Score, which is the weighted harmonic mean of precision and recall.
|
|
It ranges between 1 and 0, where 1 is perfect and the worst value is 0.
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = FBeta(0.25)
|
|
>>> metric(pred, target)
|
|
tensor(0.7361)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
beta: float,
|
|
num_classes: Optional[int] = None,
|
|
reduction: str = 'elementwise_mean',
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
beta: determines the weight of recall in the combined score.
|
|
num_classes: number of classes
|
|
reduction: a method for reducing accuracies over labels (default: takes the mean)
|
|
Available reduction methods:
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for DDP reduction
|
|
"""
|
|
super().__init__(name='fbeta',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.beta = beta
|
|
self.num_classes = num_classes
|
|
self.reduction = reduction
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: groundtruth labels
|
|
|
|
Return:
|
|
torch.Tensor: classification score
|
|
"""
|
|
return fbeta_score(pred=pred, target=target,
|
|
beta=self.beta, num_classes=self.num_classes,
|
|
reduction=self.reduction)
|
|
|
|
|
|
class F1(TensorMetric):
|
|
"""
|
|
Computes the F1 score, which is the harmonic mean of the precision and recall.
|
|
It ranges between 1 and 0, where 1 is perfect and the worst value is 0.
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = F1()
|
|
>>> metric(pred, target)
|
|
tensor(0.6667)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_classes: Optional[int] = None,
|
|
reduction: str = 'elementwise_mean',
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
num_classes: number of classes
|
|
reduction: a method for reducing accuracies over labels (default: takes the mean)
|
|
Available reduction methods:
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='f1',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.num_classes = num_classes
|
|
self.reduction = reduction
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: groundtruth labels
|
|
|
|
Return:
|
|
torch.Tensor: classification score
|
|
"""
|
|
return f1_score(pred=pred, target=target,
|
|
num_classes=self.num_classes,
|
|
reduction=self.reduction)
|
|
|
|
|
|
class ROC(TensorCollectionMetric):
|
|
"""
|
|
Computes the Receiver Operator Characteristic (ROC)
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 2, 2])
|
|
>>> metric = ROC()
|
|
>>> fps, tps, thresholds = metric(pred, target)
|
|
>>> fps
|
|
tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000])
|
|
>>> tps
|
|
tensor([0., 0., 0., 1., 1.])
|
|
>>> thresholds
|
|
tensor([4., 3., 2., 1., 0.])
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
pos_label: int = 1,
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
pos_label: positive label indicator
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='roc',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.pos_label = pos_label
|
|
|
|
def forward(
|
|
self,
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
sample_weight: Optional[Sequence] = None
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted labels
|
|
target: groundtruth labels
|
|
sample_weight: the weights per sample
|
|
|
|
Return:
|
|
- false positive rate
|
|
- true positive rate
|
|
- thresholds
|
|
"""
|
|
return roc(pred=pred, target=target,
|
|
sample_weight=sample_weight,
|
|
pos_label=self.pos_label)
|
|
|
|
|
|
class MulticlassROC(TensorCollectionMetric):
|
|
"""
|
|
Computes the multiclass ROC
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
|
|
... [0.05, 0.85, 0.05, 0.05],
|
|
... [0.05, 0.05, 0.85, 0.05],
|
|
... [0.05, 0.05, 0.05, 0.85]])
|
|
>>> target = torch.tensor([0, 1, 3, 2])
|
|
>>> metric = MulticlassROC()
|
|
>>> classes_roc = metric(pred, target)
|
|
>>> metric(pred, target) # doctest: +NORMALIZE_WHITESPACE
|
|
((tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
|
|
(tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
|
|
(tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])),
|
|
(tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])))
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_classes: Optional[int] = None,
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
num_classes: number of classes
|
|
reduction: a method for reducing accuracies over labels (default: takes the mean)
|
|
Available reduction methods:
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='multiclass_roc',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.num_classes = num_classes
|
|
|
|
def forward(
|
|
self, pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
sample_weight: Optional[Sequence] = None,
|
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted probability for each label
|
|
target: groundtruth labels
|
|
sample_weight: Weights for each sample defining the sample's impact on the score
|
|
|
|
Return:
|
|
tuple: A tuple consisting of one tuple per class, holding false positive rate, true positive rate and thresholds
|
|
|
|
"""
|
|
return multiclass_roc(pred=pred,
|
|
target=target,
|
|
sample_weight=sample_weight,
|
|
num_classes=self.num_classes)
|
|
|
|
|
|
class MulticlassPrecisionRecall(TensorCollectionMetric):
|
|
"""Computes the multiclass PR Curve
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
|
|
... [0.05, 0.85, 0.05, 0.05],
|
|
... [0.05, 0.05, 0.85, 0.05],
|
|
... [0.05, 0.05, 0.05, 0.85]])
|
|
>>> target = torch.tensor([0, 1, 3, 2])
|
|
>>> metric = MulticlassPrecisionRecall()
|
|
>>> metric(pred, target) # doctest: +NORMALIZE_WHITESPACE
|
|
((tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500])),
|
|
(tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500])),
|
|
(tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.8500])),
|
|
(tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.8500])))
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_classes: Optional[int] = None,
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
num_classes: number of classes
|
|
reduction: a method for reducing accuracies over labels (default: takes the mean)
|
|
Available reduction methods:
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
|
|
"""
|
|
super().__init__(name='multiclass_precision_recall_curve',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.num_classes = num_classes
|
|
|
|
def forward(
|
|
self,
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
sample_weight: Optional[Sequence] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted probability for each label
|
|
target: groundtruth labels
|
|
sample_weight: Weights for each sample defining the sample's impact on the score
|
|
|
|
Return:
|
|
tuple: A tuple consisting of one tuple per class, holding precision, recall and thresholds
|
|
|
|
"""
|
|
return multiclass_precision_recall_curve(pred=pred,
|
|
target=target,
|
|
sample_weight=sample_weight,
|
|
num_classes=self.num_classes)
|
|
|
|
|
|
class DiceCoefficient(TensorMetric):
|
|
"""
|
|
Computes the dice coefficient
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
|
|
... [0.05, 0.85, 0.05, 0.05],
|
|
... [0.05, 0.05, 0.85, 0.05],
|
|
... [0.05, 0.05, 0.05, 0.85]])
|
|
>>> target = torch.tensor([0, 1, 3, 2])
|
|
>>> metric = DiceCoefficient()
|
|
>>> metric(pred, target)
|
|
tensor(0.3333)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
include_background: bool = False,
|
|
nan_score: float = 0.0, no_fg_score: float = 0.0,
|
|
reduction: str = 'elementwise_mean',
|
|
reduce_group: Any = None,
|
|
reduce_op: Any = None,
|
|
):
|
|
"""
|
|
Args:
|
|
include_background: whether to also compute dice for the background
|
|
nan_score: score to return, if a NaN occurs during computation (denom zero)
|
|
no_fg_score: score to return, if no foreground pixel was found in target
|
|
reduction: a method for reducing accuracies over labels (default: takes the mean)
|
|
Available reduction methods:
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
reduce_group: the process group to reduce metric results from DDP
|
|
reduce_op: the operation to perform for ddp reduction
|
|
"""
|
|
super().__init__(name='dice',
|
|
reduce_group=reduce_group,
|
|
reduce_op=reduce_op)
|
|
|
|
self.include_background = include_background
|
|
self.nan_score = nan_score
|
|
self.no_fg_score = no_fg_score
|
|
self.reduction = reduction
|
|
|
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Actual metric computation
|
|
|
|
Args:
|
|
pred: predicted probability for each label
|
|
target: groundtruth labels
|
|
|
|
Return:
|
|
torch.Tensor: the calculated dice coefficient
|
|
"""
|
|
return dice_score(pred=pred,
|
|
target=target,
|
|
bg=self.include_background,
|
|
nan_score=self.nan_score,
|
|
no_fg_score=self.no_fg_score,
|
|
reduction=self.reduction)
|
|
|
|
|
|
class IoU(TensorMetric):
|
|
"""
|
|
Computes the intersection over union.
|
|
|
|
Example:
|
|
|
|
>>> pred = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0],
|
|
... [0, 0, 1, 1, 1, 0, 0, 0],
|
|
... [0, 0, 0, 0, 0, 0, 0, 0]])
|
|
>>> target = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0],
|
|
... [0, 0, 0, 1, 1, 1, 0, 0],
|
|
... [0, 0, 0, 0, 0, 0, 0, 0]])
|
|
>>> metric = IoU()
|
|
>>> metric(pred, target)
|
|
tensor(0.7045)
|
|
|
|
"""
|
|
def __init__(self,
|
|
remove_bg: bool = False,
|
|
reduction: str = 'elementwise_mean'):
|
|
"""
|
|
Args:
|
|
remove_bg: Flag to state whether a background class has been included
|
|
within input parameters. If true, will remove background class. If
|
|
false, return IoU over all classes.
|
|
Assumes that background is '0' class in input tensor
|
|
reduction: a method for reducing IoU over labels (default: takes the mean)
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
"""
|
|
super().__init__(name='iou')
|
|
self.remove_bg = remove_bg
|
|
self.reduction = reduction
|
|
|
|
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor,
|
|
sample_weight: Optional[torch.Tensor] = None):
|
|
"""
|
|
Actual metric calculation.
|
|
"""
|
|
return iou(y_pred, y_true, remove_bg=self.remove_bg, reduction=self.reduction)
|