lightning/docs/source-pytorch/cli/lightning_cli_advanced_2.rst

210 lines
5.6 KiB
ReStructuredText

:orphan:
.. testsetup:: *
:skipif: not _JSONARGPARSE_AVAILABLE
import torch
from unittest import mock
from typing import List
import lightning.pytorch.cli as pl_cli
from lightning.pytorch import LightningModule, LightningDataModule, Trainer, Callback
class NoFitTrainer(Trainer):
def fit(self, *_, **__):
pass
class LightningCLI(pl_cli.LightningCLI):
def __init__(self, *args, trainer_class=NoFitTrainer, run=False, **kwargs):
super().__init__(*args, trainer_class=trainer_class, run=run, **kwargs)
class MyModel(LightningModule):
def __init__(
self,
encoder_layers: int = 12,
decoder_layers: List[int] = [2, 4],
batch_size: int = 8,
):
pass
class MyDataModule(LightningDataModule):
def __init__(self, batch_size: int = 8):
self.num_classes = 5
mock_argv = mock.patch("sys.argv", ["any.py"])
mock_argv.start()
.. testcleanup:: *
mock_argv.stop()
#################################################
Configure hyperparameters from the CLI (Advanced)
#################################################
*********************************
Customize arguments by subcommand
*********************************
To customize arguments by subcommand, pass the config *before* the subcommand:
.. code-block:: bash
$ python main.py [before] [subcommand] [after]
$ python main.py ... fit ...
For example, here we set the Trainer argument [max_steps = 100] for the full training routine and [max_steps = 10] for
testing:
.. code-block:: bash
# config.yaml
fit:
trainer:
max_steps: 100
test:
trainer:
max_epochs: 10
now you can toggle this behavior by subcommand:
.. code-block:: bash
# full routine with max_steps = 100
$ python main.py --config config.yaml fit
# test only with max_epochs = 10
$ python main.py --config config.yaml test
----
***************************
Run from cloud yaml configs
***************************
For certain enterprise workloads, Lightning CLI supports running from hosted configs:
.. code-block:: bash
$ python main.py [subcommand] --config s3://bucket/config.yaml
For more options, refer to :doc:`Remote filesystems <../common/remote_fs>`.
----
**************************************
Use a config via environment variables
**************************************
For certain CI/CD systems, it's useful to pass in raw yaml config as environment variables:
.. code-block:: bash
$ python main.py fit --trainer "$TRAINER_CONFIG" --model "$MODEL_CONFIG" [...]
----
***************************************
Run from environment variables directly
***************************************
The Lightning CLI can convert every possible CLI flag into an environment variable. To enable this, add to
``parser_kwargs`` the ``default_env`` argument:
.. code:: python
cli = LightningCLI(..., parser_kwargs={"default_env": True})
now use the ``--help`` CLI flag with any subcommand:
.. code:: bash
$ python main.py fit --help
which will show you ALL possible environment variables that can be set:
.. code:: bash
usage: main.py [options] fit [-h] [-c CONFIG]
...
optional arguments:
...
ARG: --model.out_dim OUT_DIM
ENV: PL_FIT__MODEL__OUT_DIM
(type: int, default: 10)
ARG: --model.learning_rate LEARNING_RATE
ENV: PL_FIT__MODEL__LEARNING_RATE
(type: float, default: 0.02)
now you can customize the behavior via environment variables:
.. code:: bash
# set the options via env vars
$ export PL_FIT__MODEL__LEARNING_RATE=0.01
$ export PL_FIT__MODEL__OUT_DIM=5
$ python main.py fit
----
************************
Set default config files
************************
To set a path to a config file of defaults, use the ``default_config_files`` argument:
.. testcode::
cli = LightningCLI(MyModel, MyDataModule, parser_kwargs={"default_config_files": ["my_cli_defaults.yaml"]})
or if you want defaults per subcommand:
.. testcode::
cli = LightningCLI(MyModel, MyDataModule, parser_kwargs={"fit": {"default_config_files": ["my_fit_defaults.yaml"]}})
----
*****************************
Enable variable interpolation
*****************************
In certain cases where multiple settings need to share a value, consider using variable interpolation. For instance:
.. code-block:: yaml
model:
encoder_layers: 12
decoder_layers:
- ${model.encoder_layers}
- 4
To enable variable interpolation, first install omegaconf:
.. code:: bash
pip install omegaconf
Then set omegaconf when instantiating the ``LightningCLI`` class:
.. code:: python
cli = LightningCLI(MyModel, parser_kwargs={"parser_mode": "omegaconf"})
After this, the CLI will automatically perform interpolation in yaml files:
.. code:: bash
python main.py --model.encoder_layers=12
For more details about the interpolation support and its limitations, have a look at the `jsonargparse
<https://jsonargparse.readthedocs.io/en/stable/#variable-interpolation>`__ and the `omegaconf
<https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#variable-interpolation>`__ documentations.
.. note::
There are many use cases in which variable interpolation is not the correct approach. When a parameter **must
always** be derived from other settings, it shouldn't be up to the CLI user to do this in a config file. For
example, if the data and model both require ``batch_size`` and must be the same value, then
:ref:`cli_link_arguments` should be used instead of interpolation.