210 lines
5.6 KiB
ReStructuredText
210 lines
5.6 KiB
ReStructuredText
:orphan:
|
|
|
|
.. testsetup:: *
|
|
:skipif: not _JSONARGPARSE_AVAILABLE
|
|
|
|
import torch
|
|
from unittest import mock
|
|
from typing import List
|
|
import lightning.pytorch.cli as pl_cli
|
|
from lightning.pytorch import LightningModule, LightningDataModule, Trainer, Callback
|
|
|
|
|
|
class NoFitTrainer(Trainer):
|
|
def fit(self, *_, **__):
|
|
pass
|
|
|
|
|
|
class LightningCLI(pl_cli.LightningCLI):
|
|
def __init__(self, *args, trainer_class=NoFitTrainer, run=False, **kwargs):
|
|
super().__init__(*args, trainer_class=trainer_class, run=run, **kwargs)
|
|
|
|
|
|
class MyModel(LightningModule):
|
|
def __init__(
|
|
self,
|
|
encoder_layers: int = 12,
|
|
decoder_layers: List[int] = [2, 4],
|
|
batch_size: int = 8,
|
|
):
|
|
pass
|
|
|
|
|
|
class MyDataModule(LightningDataModule):
|
|
def __init__(self, batch_size: int = 8):
|
|
self.num_classes = 5
|
|
|
|
|
|
mock_argv = mock.patch("sys.argv", ["any.py"])
|
|
mock_argv.start()
|
|
|
|
.. testcleanup:: *
|
|
|
|
mock_argv.stop()
|
|
|
|
#################################################
|
|
Configure hyperparameters from the CLI (Advanced)
|
|
#################################################
|
|
|
|
*********************************
|
|
Customize arguments by subcommand
|
|
*********************************
|
|
To customize arguments by subcommand, pass the config *before* the subcommand:
|
|
|
|
.. code-block:: bash
|
|
|
|
$ python main.py [before] [subcommand] [after]
|
|
$ python main.py ... fit ...
|
|
|
|
For example, here we set the Trainer argument [max_steps = 100] for the full training routine and [max_steps = 10] for
|
|
testing:
|
|
|
|
.. code-block:: bash
|
|
|
|
# config.yaml
|
|
fit:
|
|
trainer:
|
|
max_steps: 100
|
|
test:
|
|
trainer:
|
|
max_epochs: 10
|
|
|
|
now you can toggle this behavior by subcommand:
|
|
|
|
.. code-block:: bash
|
|
|
|
# full routine with max_steps = 100
|
|
$ python main.py --config config.yaml fit
|
|
|
|
# test only with max_epochs = 10
|
|
$ python main.py --config config.yaml test
|
|
|
|
----
|
|
|
|
***************************
|
|
Run from cloud yaml configs
|
|
***************************
|
|
For certain enterprise workloads, Lightning CLI supports running from hosted configs:
|
|
|
|
.. code-block:: bash
|
|
|
|
$ python main.py [subcommand] --config s3://bucket/config.yaml
|
|
|
|
For more options, refer to :doc:`Remote filesystems <../common/remote_fs>`.
|
|
|
|
----
|
|
|
|
**************************************
|
|
Use a config via environment variables
|
|
**************************************
|
|
For certain CI/CD systems, it's useful to pass in raw yaml config as environment variables:
|
|
|
|
.. code-block:: bash
|
|
|
|
$ python main.py fit --trainer "$TRAINER_CONFIG" --model "$MODEL_CONFIG" [...]
|
|
|
|
----
|
|
|
|
***************************************
|
|
Run from environment variables directly
|
|
***************************************
|
|
The Lightning CLI can convert every possible CLI flag into an environment variable. To enable this, add to
|
|
``parser_kwargs`` the ``default_env`` argument:
|
|
|
|
.. code:: python
|
|
|
|
cli = LightningCLI(..., parser_kwargs={"default_env": True})
|
|
|
|
now use the ``--help`` CLI flag with any subcommand:
|
|
|
|
.. code:: bash
|
|
|
|
$ python main.py fit --help
|
|
|
|
which will show you ALL possible environment variables that can be set:
|
|
|
|
.. code:: bash
|
|
|
|
usage: main.py [options] fit [-h] [-c CONFIG]
|
|
...
|
|
|
|
optional arguments:
|
|
...
|
|
ARG: --model.out_dim OUT_DIM
|
|
ENV: PL_FIT__MODEL__OUT_DIM
|
|
(type: int, default: 10)
|
|
ARG: --model.learning_rate LEARNING_RATE
|
|
ENV: PL_FIT__MODEL__LEARNING_RATE
|
|
(type: float, default: 0.02)
|
|
|
|
now you can customize the behavior via environment variables:
|
|
|
|
.. code:: bash
|
|
|
|
# set the options via env vars
|
|
$ export PL_FIT__MODEL__LEARNING_RATE=0.01
|
|
$ export PL_FIT__MODEL__OUT_DIM=5
|
|
|
|
$ python main.py fit
|
|
|
|
----
|
|
|
|
************************
|
|
Set default config files
|
|
************************
|
|
To set a path to a config file of defaults, use the ``default_config_files`` argument:
|
|
|
|
.. testcode::
|
|
|
|
cli = LightningCLI(MyModel, MyDataModule, parser_kwargs={"default_config_files": ["my_cli_defaults.yaml"]})
|
|
|
|
or if you want defaults per subcommand:
|
|
|
|
.. testcode::
|
|
|
|
cli = LightningCLI(MyModel, MyDataModule, parser_kwargs={"fit": {"default_config_files": ["my_fit_defaults.yaml"]}})
|
|
|
|
----
|
|
|
|
*****************************
|
|
Enable variable interpolation
|
|
*****************************
|
|
In certain cases where multiple settings need to share a value, consider using variable interpolation. For instance:
|
|
|
|
.. code-block:: yaml
|
|
|
|
model:
|
|
encoder_layers: 12
|
|
decoder_layers:
|
|
- ${model.encoder_layers}
|
|
- 4
|
|
|
|
To enable variable interpolation, first install omegaconf:
|
|
|
|
.. code:: bash
|
|
|
|
pip install omegaconf
|
|
|
|
Then set omegaconf when instantiating the ``LightningCLI`` class:
|
|
|
|
.. code:: python
|
|
|
|
cli = LightningCLI(MyModel, parser_kwargs={"parser_mode": "omegaconf"})
|
|
|
|
After this, the CLI will automatically perform interpolation in yaml files:
|
|
|
|
.. code:: bash
|
|
|
|
python main.py --model.encoder_layers=12
|
|
|
|
For more details about the interpolation support and its limitations, have a look at the `jsonargparse
|
|
<https://jsonargparse.readthedocs.io/en/stable/#variable-interpolation>`__ and the `omegaconf
|
|
<https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#variable-interpolation>`__ documentations.
|
|
|
|
.. note::
|
|
|
|
There are many use cases in which variable interpolation is not the correct approach. When a parameter **must
|
|
always** be derived from other settings, it shouldn't be up to the CLI user to do this in a config file. For
|
|
example, if the data and model both require ``batch_size`` and must be the same value, then
|
|
:ref:`cli_link_arguments` should be used instead of interpolation.
|