lightning/pytorch_lightning/callbacks/gradient_accumulation_sched...

83 lines
2.9 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Gradient Accumulator
====================
Change gradient accumulation factor according to scheduling.
Trainer also calls ``optimizer.step()`` for the last indivisible step number.
"""
from typing import Dict
from pytorch_lightning.callbacks.base import Callback
class GradientAccumulationScheduler(Callback):
r"""
Change gradient accumulation factor according to scheduling.
Args:
scheduling: scheduling in format {epoch: accumulation_factor}
Raises:
TypeError:
If ``scheduling`` is an empty ``dict``,
or not all keys and values of ``scheduling`` are integers.
IndexError:
If ``minimal_epoch`` is less than 0.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import GradientAccumulationScheduler
# at epoch 5 start accumulating every 2 batches
>>> accumulator = GradientAccumulationScheduler(scheduling={5: 2})
>>> trainer = Trainer(callbacks=[accumulator])
# alternatively, pass the scheduling dict directly to the Trainer
>>> trainer = Trainer(accumulate_grad_batches={5: 2})
"""
def __init__(self, scheduling: Dict[int, int]):
super().__init__()
if not scheduling: # empty dict error
raise TypeError("Empty dict cannot be interpreted correct")
for key in scheduling:
if not isinstance(key, int) or not isinstance(scheduling[key], int):
raise TypeError("All epoches and accumulation factor must be integers")
minimal_epoch = min(scheduling.keys())
if minimal_epoch < 0:
raise IndexError(f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct")
if minimal_epoch != 0: # if user didnt define first epoch accumulation factor
scheduling.update({0: 1})
self.scheduling = scheduling
self.epochs = sorted(scheduling.keys())
def going_to_accumulate_grad_batches(self):
return any([v > 1 for v in self.scheduling.values()])
def on_train_epoch_start(self, trainer, pl_module):
epoch = trainer.current_epoch
for i in reversed(range(len(self.epochs))):
if epoch >= self.epochs[i]:
trainer.accumulate_grad_batches = self.scheduling.get(self.epochs[i])
break