364 lines
14 KiB
Python
364 lines
14 KiB
Python
# Copyright The PyTorch Lightning team.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
r"""
|
||
Finetuning Callback
|
||
^^^^^^^^^^^^^^^^^^^^
|
||
Freeze and unfreeze models for finetuning purposes
|
||
"""
|
||
import logging
|
||
from typing import Callable, Generator, Iterable, List, Optional, Union
|
||
|
||
import torch
|
||
from torch.nn import Module
|
||
from torch.nn.modules.batchnorm import _BatchNorm
|
||
from torch.optim.optimizer import Optimizer
|
||
|
||
from pytorch_lightning.callbacks.base import Callback
|
||
from pytorch_lightning.core.lightning import LightningModule
|
||
from pytorch_lightning.utilities import rank_zero_warn
|
||
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||
|
||
log = logging.getLogger(__name__)
|
||
|
||
|
||
def multiplicative(epoch):
|
||
return 2
|
||
|
||
|
||
class BaseFinetuning(Callback):
|
||
r"""
|
||
|
||
This class implements the base logic for writing your own Finetuning Callback.
|
||
|
||
Override ``freeze_before_training`` and ``finetune_function`` methods with your own logic.
|
||
|
||
``freeze_before_training``: This method is called before ``configure_optimizers``
|
||
and should be used to freeze any modules parameters.
|
||
|
||
``finetune_function``: This method is called on every train epoch start and should be used to
|
||
``unfreeze`` any parameters. Those parameters needs to be added in a new ``param_group``
|
||
within the optimizer.
|
||
|
||
.. note:: Make sure to filter the parameters based on ``requires_grad``.
|
||
|
||
Example::
|
||
|
||
class MyModel(LightningModule)
|
||
|
||
...
|
||
|
||
def configure_optimizer(self):
|
||
# Make sure to filter the parameters based on `requires_grad`
|
||
return Adam(filter(lambda p: p.requires_grad, self.parameters))
|
||
|
||
class FeatureExtractorFreezeUnfreeze(BaseFinetuning):
|
||
|
||
def __init__(self, unfreeze_at_epoch=10)
|
||
self._unfreeze_at_epoch = unfreeze_at_epoch
|
||
|
||
def freeze_before_training(self, pl_module):
|
||
# freeze any module you want
|
||
# Here, we are freezing ``feature_extractor``
|
||
self.freeze(pl_module.feature_extractor)
|
||
|
||
def finetune_function(self, pl_module, current_epoch, optimizer, optimizer_idx):
|
||
# When `current_epoch` is 10, feature_extractor will start training.
|
||
if current_epoch == self._unfreeze_at_epoch:
|
||
self.unfreeze_and_add_param_group(
|
||
modules=pl_module.feature_extractor,
|
||
optimizer=optimizer,
|
||
train_bn=True,
|
||
)
|
||
"""
|
||
|
||
@staticmethod
|
||
def flatten_modules(modules: Union[Module, Iterable[Union[Module, Iterable]]]) -> List[Module]:
|
||
"""
|
||
This function is used to flatten a module or an iterable of modules into a list of its modules.
|
||
|
||
Args:
|
||
modules: A given module or an iterable of modules
|
||
|
||
Returns:
|
||
List of modules
|
||
"""
|
||
if isinstance(modules, Iterable):
|
||
_modules = []
|
||
for m in modules:
|
||
_modules.extend(BaseFinetuning.flatten_modules(m))
|
||
|
||
else:
|
||
_modules = modules.modules()
|
||
|
||
# Leaf nodes in the graph have no children, so we use that to filter
|
||
return [m for m in _modules if not list(m.children())]
|
||
|
||
@staticmethod
|
||
def filter_params(
|
||
modules: Union[Module, Iterable[Union[Module, Iterable]]],
|
||
train_bn: bool = True,
|
||
requires_grad: bool = True
|
||
) -> Generator:
|
||
"""Yields the `requires_grad` parameters of a given module or list of modules.
|
||
|
||
Args:
|
||
modules: A given module or an iterable of modules
|
||
train_bn: Whether to train BatchNorm module
|
||
requires_grad: Whether to create a generator for trainable or non-trainable parameters.
|
||
|
||
Returns:
|
||
Generator
|
||
"""
|
||
modules = BaseFinetuning.flatten_modules(modules)
|
||
for mod in modules:
|
||
if isinstance(mod, _BatchNorm) and not train_bn:
|
||
continue
|
||
for param in mod.parameters():
|
||
if param.requires_grad == requires_grad:
|
||
yield param
|
||
|
||
@staticmethod
|
||
def make_trainable(modules: Union[Module, Iterable[Union[Module, Iterable]]]) -> None:
|
||
"""
|
||
Unfreezes the parameters of the provided modules
|
||
|
||
Args:
|
||
modules: A given module or an iterable of modules
|
||
"""
|
||
modules = BaseFinetuning.flatten_modules(modules)
|
||
for module in modules:
|
||
for param in module.parameters():
|
||
param.requires_grad = True
|
||
|
||
@staticmethod
|
||
def freeze(modules: Union[Module, Iterable[Union[Module, Iterable]]], train_bn: bool = True) -> None:
|
||
"""
|
||
Freezes the parameters of the provided modules
|
||
|
||
Args:
|
||
modules: A given module or an iterable of modules
|
||
train_bn: If True, leave the BatchNorm layers in training mode
|
||
|
||
Returns:
|
||
None
|
||
"""
|
||
modules = BaseFinetuning.flatten_modules(modules)
|
||
for mod in modules:
|
||
if isinstance(mod, _BatchNorm) and train_bn:
|
||
BaseFinetuning.make_trainable(mod)
|
||
else:
|
||
for param in mod.parameters():
|
||
param.requires_grad = False
|
||
|
||
@staticmethod
|
||
def filter_on_optimizer(optimizer: Optimizer, params: Iterable) -> List:
|
||
"""
|
||
This function is used to exclude any parameter which already exists in
|
||
this optimizer
|
||
|
||
Args:
|
||
optimizer: Optimizer used for parameter exclusion
|
||
params: Iterable of parameters used to check against the provided optimizer
|
||
|
||
Returns:
|
||
List of parameters not contained in this optimizer param groups
|
||
"""
|
||
out_params = []
|
||
removed_params = []
|
||
for param in params:
|
||
if not any(torch.equal(p, param) for group in optimizer.param_groups for p in group["params"]):
|
||
out_params.append(param)
|
||
else:
|
||
removed_params.append(param)
|
||
|
||
if removed_params:
|
||
rank_zero_warn(
|
||
"The provided params to be freezed already exist within another group of this optimizer."
|
||
" Those parameters will be skipped.\n"
|
||
"HINT: Did you init your optimizer in `configure_optimizer` as such:\n"
|
||
f" {type(optimizer)}(filter(lambda p: p.requires_grad, self.parameters()), ...) ", UserWarning
|
||
)
|
||
return out_params
|
||
|
||
@staticmethod
|
||
def unfreeze_and_add_param_group(
|
||
modules: Union[Module, Iterable[Union[Module, Iterable]]],
|
||
optimizer: Optimizer,
|
||
lr: Optional[float] = None,
|
||
initial_denom_lr: float = 10.,
|
||
train_bn: bool = True,
|
||
) -> None:
|
||
"""
|
||
Unfreezes a module and adds its parameters to an optimizer.
|
||
|
||
Args:
|
||
|
||
modules: A module or iterable of modules to unfreeze.
|
||
Their parameters will be added to an optimizer as a new param group.
|
||
|
||
optimizer: The provided optimizer will receive new parameters and will add them to
|
||
`add_param_group`
|
||
|
||
lr: Learning rate for the new param group.
|
||
|
||
initial_denom_lr: If no lr is provided, the learning from the first param group will be used
|
||
and divided by initial_denom_lr.
|
||
|
||
train_bn: Whether to train the BatchNormalization layers.
|
||
|
||
Returns:
|
||
None
|
||
"""
|
||
BaseFinetuning.make_trainable(modules)
|
||
params_lr = optimizer.param_groups[0]['lr'] if lr is None else float(lr)
|
||
denom_lr = initial_denom_lr if lr is None else 1.
|
||
params = BaseFinetuning.filter_params(modules, train_bn=train_bn, requires_grad=True)
|
||
params = BaseFinetuning.filter_on_optimizer(optimizer, params)
|
||
if params:
|
||
optimizer.add_param_group({
|
||
'params': params,
|
||
'lr': params_lr / denom_lr,
|
||
})
|
||
|
||
def on_before_accelerator_backend_setup(self, trainer, pl_module):
|
||
self.freeze_before_training(pl_module)
|
||
|
||
def on_train_epoch_start(self, trainer, pl_module):
|
||
"""Called when the epoch begins."""
|
||
for opt_idx, optimizer in trainer.train_loop.prepare_optimizers():
|
||
self.finetune_function(pl_module, trainer.current_epoch, optimizer, opt_idx)
|
||
|
||
def finetune_function(self, pl_module: LightningModule, epoch: int, optimizer: Optimizer, opt_idx: int):
|
||
"""
|
||
Override to add your unfreeze logic
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
def freeze_before_training(self, pl_module: LightningModule):
|
||
"""
|
||
Override to add your freeze logic
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
|
||
class BackboneFinetuning(BaseFinetuning):
|
||
r"""
|
||
|
||
Finetune a backbone model based on a learning rate user-defined scheduling.
|
||
When the backbone learning rate reaches the current model learning rate
|
||
and ``should_align`` is set to True, it will align with it for the rest of the training.
|
||
|
||
Args:
|
||
|
||
unfreeze_backbone_at_epoch: Epoch at which the backbone will be unfreezed.
|
||
|
||
lambda_func: Scheduling function for increasing backbone learning rate.
|
||
|
||
backbone_initial_ratio_lr:
|
||
Used to scale down the backbone learning rate compared to rest of model
|
||
|
||
backbone_initial_lr: Optional, Inital learning rate for the backbone.
|
||
By default, we will use current_learning / backbone_initial_ratio_lr
|
||
|
||
should_align: Wheter to align with current learning rate when backbone learning
|
||
reaches it.
|
||
|
||
initial_denom_lr: When unfreezing the backbone, the intial learning rate will
|
||
current_learning_rate / initial_denom_lr.
|
||
|
||
train_bn: Wheter to make Batch Normalization trainable.
|
||
|
||
verbose: Display current learning rate for model and backbone
|
||
|
||
round: Precision for displaying learning rate
|
||
|
||
Example::
|
||
|
||
>>> from pytorch_lightning import Trainer
|
||
>>> from pytorch_lightning.callbacks import BackboneFinetuning
|
||
>>> multiplicative = lambda epoch: 1.5
|
||
>>> backbone_finetuning = BackboneFinetuning(200, multiplicative)
|
||
>>> trainer = Trainer(callbacks=[backbone_finetuning])
|
||
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
unfreeze_backbone_at_epoch: int = 10,
|
||
lambda_func: Callable = multiplicative,
|
||
backbone_initial_ratio_lr: float = 10e-2,
|
||
backbone_initial_lr: Optional[float] = None,
|
||
should_align: bool = True,
|
||
initial_denom_lr: float = 10.,
|
||
train_bn: bool = True,
|
||
verbose: bool = False,
|
||
round: int = 12,
|
||
):
|
||
self.unfreeze_backbone_at_epoch = unfreeze_backbone_at_epoch
|
||
self.backbone_initial_lr = backbone_initial_lr
|
||
self.lambda_func = lambda_func
|
||
self.backbone_initial_ratio_lr = backbone_initial_ratio_lr
|
||
self.should_align = should_align
|
||
self.initial_denom_lr = initial_denom_lr
|
||
self.train_bn = train_bn
|
||
self.round = round
|
||
self.verbose = verbose
|
||
|
||
def on_fit_start(self, trainer, pl_module):
|
||
"""
|
||
Raises:
|
||
MisconfigurationException:
|
||
If LightningModule has no nn.Module `backbone` attribute.
|
||
"""
|
||
if hasattr(pl_module, "backbone") and isinstance(pl_module.backbone, Module):
|
||
return
|
||
raise MisconfigurationException("The LightningModule should have a nn.Module `backbone` attribute")
|
||
|
||
def freeze_before_training(self, pl_module: LightningModule):
|
||
self.freeze(pl_module.backbone)
|
||
|
||
def finetune_function(self, pl_module: LightningModule, epoch: int, optimizer: Optimizer, opt_idx: int):
|
||
"""Called when the epoch begins."""
|
||
|
||
if epoch == self.unfreeze_backbone_at_epoch:
|
||
current_lr = optimizer.param_groups[0]['lr']
|
||
initial_backbone_lr = self.backbone_initial_lr if self.backbone_initial_lr is not None \
|
||
else current_lr * self.backbone_initial_ratio_lr
|
||
self.previous_backbone_lr = initial_backbone_lr
|
||
self.unfreeze_and_add_param_group(
|
||
pl_module.backbone,
|
||
optimizer,
|
||
initial_backbone_lr,
|
||
train_bn=self.train_bn,
|
||
initial_denom_lr=self.initial_denom_lr
|
||
)
|
||
if self.verbose:
|
||
log.info(
|
||
f"Current lr: {round(current_lr, self.round)}, "
|
||
f"Backbone lr: {round(initial_backbone_lr, self.round)}"
|
||
)
|
||
|
||
elif epoch > self.unfreeze_backbone_at_epoch:
|
||
current_lr = optimizer.param_groups[0]['lr']
|
||
next_current_backbone_lr = self.lambda_func(epoch + 1) * self.previous_backbone_lr
|
||
next_current_backbone_lr = current_lr if (self.should_align and next_current_backbone_lr > current_lr) \
|
||
else next_current_backbone_lr
|
||
optimizer.param_groups[-1]["lr"] = next_current_backbone_lr
|
||
self.previous_backbone_lr = next_current_backbone_lr
|
||
if self.verbose:
|
||
log.info(
|
||
f"Current lr: {round(current_lr, self.round)}, "
|
||
f"Backbone lr: {round(next_current_backbone_lr, self.round)}"
|
||
)
|