lightning/tests/utilities/test_model_summary.py

359 lines
12 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import pytest
import torch
import torch.nn as nn
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.utilities import _TORCH_GREATER_EQUAL_1_9
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_summary import ModelSummary, summarize, UNKNOWN_SIZE
from tests.helpers import BoringModel
from tests.helpers.advanced_models import ParityModuleRNN
from tests.helpers.runif import RunIf
class EmptyModule(LightningModule):
"""A module that has no layers."""
def __init__(self):
super().__init__()
self.parameter = torch.rand(3, 3, requires_grad=True)
self.example_input_array = torch.zeros(1, 2, 3, 4, 5)
def forward(self, *args, **kwargs):
return {"loss": self.parameter.sum()}
class PreCalculatedModel(BoringModel):
"""A model with precalculated total params size in MB for FP16 and FP32."""
def __init__(self, precision: int = 32):
super().__init__()
# 32K params
self.layer = nn.Linear(32, 1000, bias=False)
# 218K params
self.layer1 = nn.Linear(1000, 218, bias=False)
# calculate model size based on precision.
self.pre_calculated_model_size = 1.0 / (32 / precision)
def forward(self, x):
x = self.layer(x)
return self.layer1(x)
class UnorderedModel(LightningModule):
"""A model in which the layers not defined in order of execution."""
def __init__(self):
super().__init__()
# note: the definition order is intentionally scrambled for this test
self.layer2 = nn.Linear(10, 2)
self.combine = nn.Linear(7, 9)
self.layer1 = nn.Linear(3, 5)
self.relu = nn.ReLU()
# this layer is unused, therefore input-/output shapes are unknown
self.unused = nn.Conv2d(1, 1, 1)
self.example_input_array = (torch.rand(2, 3), torch.rand(2, 10))
def forward(self, x, y):
out1 = self.layer1(x)
out2 = self.layer2(y)
out = self.relu(torch.cat((out1, out2), 1))
out = self.combine(out)
return out
class MixedDtypeModel(LightningModule):
"""The parameters and inputs of this model have different dtypes."""
def __init__(self):
super().__init__()
self.embed = nn.Embedding(10, 20) # expects dtype long as input
self.reduce = nn.Linear(20, 1) # dtype: float
self.example_input_array = torch.tensor([[0, 2, 1], [3, 5, 3]]) # dtype: long
def forward(self, x):
return self.reduce(self.embed(x))
class PartialScriptModel(LightningModule):
"""A model which contains scripted layers."""
def __init__(self):
super().__init__()
self.layer1 = torch.jit.script(nn.Linear(5, 3))
self.layer2 = nn.Linear(3, 2)
self.example_input_array = torch.rand(2, 5)
def forward(self, x):
return self.layer2(self.layer1(x))
class LazyModel(LightningModule):
"""A model which contains lazy layers with uninitialized parameters."""
def __init__(self):
super().__init__()
self.layer1 = nn.LazyLinear(5)
self.layer2 = nn.LazyLinear(2)
def forward(self, inp):
return self.layer2(self.layer1(inp))
class DeepNestedModel(LightningModule):
"""A model with deep nested layers."""
def __init__(self):
super().__init__()
self.branch1 = nn.Sequential(
nn.Linear(5, 5),
nn.Sequential(
nn.Linear(5, 5),
nn.Sequential(
nn.Linear(5, 5),
nn.Sequential(nn.Linear(5, 5), nn.Sequential(nn.Linear(5, 5), nn.Sequential(nn.Linear(5, 3)))),
),
),
)
self.branch2 = nn.Linear(5, 10)
self.head = UnorderedModel()
self.example_input_array = torch.rand(2, 5)
def forward(self, inp):
return self.head(self.branch1(inp), self.branch2(inp))
def test_invalid_weights_summary():
"""Test that invalid value for weights_summary raises an error."""
model = LightningModule()
with pytest.raises(
MisconfigurationException, match="`weights_summary` can be None, .* got temp"
), pytest.deprecated_call(match="weights_summary=temp)` is deprecated"):
Trainer(weights_summary="temp")
with pytest.raises(ValueError, match="max_depth` can be .* got temp"):
ModelSummary(model, max_depth="temp")
@pytest.mark.parametrize("max_depth", [-1, 1])
def test_empty_model_summary_shapes(max_depth):
"""Test that the summary works for models that have no submodules."""
model = EmptyModule()
summary = summarize(model, max_depth=max_depth)
assert summary.in_sizes == []
assert summary.out_sizes == []
assert summary.param_nums == []
@RunIf(min_gpus=1)
@pytest.mark.parametrize("max_depth", [-1, 1])
@pytest.mark.parametrize("device", [torch.device("cpu"), torch.device("cuda", 0)])
def test_linear_model_summary_shapes(device, max_depth):
"""Test that the model summary correctly computes the input- and output shapes."""
model = UnorderedModel().to(device)
model.train()
summary = summarize(model, max_depth=max_depth)
assert summary.in_sizes == [[2, 10], [2, 7], [2, 3], [2, 7], UNKNOWN_SIZE] # layer 2 # combine # layer 1 # relu
assert summary.out_sizes == [[2, 2], [2, 9], [2, 5], [2, 7], UNKNOWN_SIZE] # layer 2 # combine # layer 1 # relu
assert model.training
assert model.device == device
def test_mixed_dtype_model_summary():
"""Test that the model summary works with models that have mixed input- and parameter dtypes."""
model = MixedDtypeModel()
summary = summarize(model)
assert summary.in_sizes == [[2, 3], [2, 3, 20]] # embed # reduce
assert summary.out_sizes == [[2, 3, 20], [2, 3, 1]] # embed # reduce
@pytest.mark.parametrize("max_depth", [-1, 0])
def test_hooks_removed_after_summarize(max_depth):
"""Test that all hooks were properly removed after summary, even ones that were not run."""
model = UnorderedModel()
summary = ModelSummary(model, max_depth=max_depth)
# hooks should be removed
for _, layer in summary.summarize().items():
handle = layer._hook_handle
assert handle.id not in handle.hooks_dict_ref()
@pytest.mark.parametrize("max_depth", [-1, 1])
def test_rnn_summary_shapes(max_depth):
"""Test that the model summary works for RNNs."""
model = ParityModuleRNN()
b = 3
t = 5
i = model.rnn.input_size
h = model.rnn.hidden_size
o = model.linear_out.out_features
model.example_input_array = torch.zeros(b, t, 10)
summary = summarize(model, max_depth=max_depth)
assert summary.in_sizes == [[b, t, i], [b, t, h]] # rnn # linear
assert summary.out_sizes == [[[b, t, h], [[1, b, h], [1, b, h]]], [b, t, o]] # rnn # linear
@pytest.mark.parametrize("max_depth", [-1, 1])
def test_summary_parameter_count(max_depth):
"""Test that the summary counts the number of parameters in every submodule."""
model = UnorderedModel()
summary = summarize(model, max_depth=max_depth)
assert summary.param_nums == [
model.layer2.weight.numel() + model.layer2.bias.numel(),
model.combine.weight.numel() + model.combine.bias.numel(),
model.layer1.weight.numel() + model.layer1.bias.numel(),
0, # ReLU
model.unused.weight.numel() + model.unused.bias.numel(),
]
@pytest.mark.parametrize("max_depth", [-1, 1])
def test_summary_layer_types(max_depth):
"""Test that the summary displays the layer names correctly."""
model = UnorderedModel()
summary = summarize(model, max_depth=max_depth)
assert summary.layer_types == ["Linear", "Linear", "Linear", "ReLU", "Conv2d"]
@pytest.mark.parametrize("max_depth", [-1, 1])
def test_summary_with_scripted_modules(max_depth):
model = PartialScriptModel()
summary = summarize(model, max_depth=max_depth)
assert summary.layer_types == ["RecursiveScriptModule", "Linear"]
assert summary.in_sizes == [UNKNOWN_SIZE, [2, 3]]
assert summary.out_sizes == [UNKNOWN_SIZE, [2, 2]]
@pytest.mark.parametrize("max_depth", [-1, 1])
@pytest.mark.parametrize(
["example_input", "expected_size"],
[
([], UNKNOWN_SIZE),
((1, 2, 3), [UNKNOWN_SIZE] * 3),
(torch.tensor(0), UNKNOWN_SIZE),
(dict(tensor=torch.zeros(1, 2, 3)), UNKNOWN_SIZE),
(torch.zeros(2, 3, 4), [2, 3, 4]),
([torch.zeros(2, 3), torch.zeros(4, 5)], [[2, 3], [4, 5]]),
((torch.zeros(2, 3), torch.zeros(4, 5)), [[2, 3], [4, 5]]),
],
)
def test_example_input_array_types(example_input, expected_size, max_depth):
"""Test the types of example inputs supported for display in the summary."""
class DummyModule(nn.Module):
def forward(self, *args, **kwargs):
return None
class DummyLightningModule(LightningModule):
def __init__(self):
super().__init__()
self.layer = DummyModule()
# this LightningModule and submodule accept any type of input
def forward(self, *args, **kwargs):
return self.layer(*args, **kwargs)
model = DummyLightningModule()
model.example_input_array = example_input
summary = summarize(model, max_depth=max_depth)
assert summary.in_sizes == [expected_size]
@pytest.mark.parametrize("max_depth", [-1, 1])
def test_model_size(max_depth):
"""Test model size is calculated correctly."""
model = PreCalculatedModel()
summary = summarize(model, max_depth=max_depth)
assert model.pre_calculated_model_size == summary.model_size
@pytest.mark.parametrize("max_depth", [-1, 1])
def test_empty_model_size(max_depth):
"""Test empty model size is zero."""
model = EmptyModule()
summary = summarize(model, max_depth=max_depth)
assert 0.0 == summary.model_size
@RunIf(min_gpus=1)
def test_model_size_precision(tmpdir):
"""Test model size for half and full precision."""
model = PreCalculatedModel()
# fit model
trainer = Trainer(default_root_dir=tmpdir, accelerator="gpu", devices=1, max_steps=1, max_epochs=1, precision=32)
trainer.fit(model)
summary = summarize(model)
assert model.pre_calculated_model_size == summary.model_size
def test_lazy_model_summary():
"""Test that the model summary can work with lazy layers."""
lazy_model = LazyModel()
summary = ModelSummary(lazy_model)
with pytest.warns(
UserWarning,
match=r"A layer with UninitializedParameter was found. "
r"Thus, the total number of parameters detected may be inaccurate.",
):
if _TORCH_GREATER_EQUAL_1_9:
assert summary.total_parameters == 0
assert summary.trainable_parameters == 0
else:
# bug in 1.8: the bias of a LazyLinear layer is initialized!
# https://github.com/pytorch/pytorch/issues/58350
assert summary.total_parameters == 7
assert summary.trainable_parameters == 7
@pytest.mark.parametrize("max_depth", [-1, 0, 1, 3, 999])
def test_max_depth_param(max_depth):
"""Test that only the modules up to the desired depth are shown."""
model = DeepNestedModel()
summary = ModelSummary(model, max_depth=max_depth)
for lname in summary.layer_names:
if max_depth >= 0:
assert lname.count(".") < max_depth
@pytest.mark.parametrize("max_depth", [-99, -2, "invalid"])
def test_raise_invalid_max_depth_value(max_depth):
with pytest.raises(ValueError, match=f"`max_depth` can be -1, 0 or > 0, got {max_depth}"):
summarize(DeepNestedModel(), max_depth=max_depth)
@pytest.mark.parametrize("example_input", [None, torch.randn(4, 32)])
def test_summary_data_output(example_input):
"""Ensure all items are converted to strings when getting summary data."""
class TestModel(BoringModel):
@property
def example_input_array(self) -> Any:
return example_input
summary = summarize(TestModel())
summary_data = summary._get_summary_data()
for column_name, entries in summary_data:
assert all(isinstance(entry, str) for entry in entries)